
Query Processing on Tensor Computation Runtimes
Dong He1, Supun Nakandala2, Dalitso Banda3, Rathijit Sen3, Karla Saur3, Kwanghyun Park3,
Carlo Curino3, Jesús Camacho-Rodríguez3, Konstantinos Karanasos4, Matteo Interlandi3

1University of Washington, 2University of California, San Diego, 3Microsoft, 4Meta
1donghe@cs.washington.edu, 2snakanda@eng.ucsd.edu, 3firstname.lastname@microsoft.com, 4kkaranasos@fb.com

ABSTRACT

The huge demand for computation in artificial intelligence (AI) is
driving unparalleled investments in hardware and software systems
for AI. This leads to an explosion in the number of specialized
hardware devices, which are now offered by major cloud vendors.
By hiding the low-level complexity through a tensor-based interface,
tensor computation runtimes (TCRs) such as PyTorch allow data
scientists to efficiently exploit the exciting capabilities offered by the
new hardware. In this paper, we explore how database management
systems can ride the wave of innovation happening in the AI space.

We design, build, and evaluate Tensor Query Processor (TQP):
TQP transforms SQL queries into tensor programs and executes
them on TCRs. TQP is able to run the full TPC-H benchmark
by implementing novel algorithms for relational operators on
the tensor routines. At the same time, TQP can support various
hardware while only requiring a fraction of the usual development
effort. Experiments show that TQP can improve query execution
time by up to 10× over specialized CPU- and GPU-only systems.
Finally, TQP can accelerate queries mixing ML predictions and SQL
end-to-end, and deliver up to 9× speedup over CPU baselines.

PVLDB Reference Format:

Dong He, Supun Nakandala, Dalitso Banda, Rathijit Sen, Karla Saur,
Kwanghyun Park, Carlo Curino, Jesús Camacho-Rodríguez, Konstantinos
Karanasos, Matteo Interlandi. Query Processing on Tensor Computation
Runtimes. PVLDB, 15(11): 2811 - 2825, 2022.
doi:10.14778/3551793.3551833

1 INTRODUCTION

DBMS vendors have delivered constant performance improvement
for decades by evolving software to keep up with Moore’s law while
influencing hardware development through close relationships with
manufacturers. While data volumes and demand for analytics are
growing faster than ever [129], the performance improvement on
CPU has slowed down [136]. However, the count of processor
transistors has continued to grow over the last decade, as hardware
manufacturers adopted first multi-core CPU architectures and then
augmented their computing platforms with specialized components
such as GPUs, FPGAs, compression and encryption chips, DSPs, and
neural-network (NN) accelerators. Although DBMS builders have
taken advantage of multi-core and SIMD instructions effectively
[76, 109, 146], the explosion in the number of specialized hardware

Work done while Dong, Supun, and Konstantinos were at Microsoft.
This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 15, No. 11 ISSN 2150-8097.
doi:10.14778/3551793.3551833

components, each with different characteristics and programming
abstractions, makes it challenging to support all the exciting
capabilities that these new powerful devices can offer.

On the other hand, the huge demand for computation in artificial
intelligence (AI) [59], combined with the market fever for AI, is
driving unparalleled investments in new hardware and software
for AI. Hardware makers (e.g., Intel [62], Apple [34], Xilinx [142],
AMD [33]), cloud vendors (e.g., Amazon [37], Microsoft [48],
Google [72]), startups (e.g., Graphcore [6], Sambanova [11],
Cerebras [4]), and car companies like Tesla [135] are investing
heavily in this space. Venture capitals alone are pouring nearly
$2B a quarter on special hardware for AI, aiming for a market
expected to exceed $200B a year by 2025 [130]. On the software
side, companies and open source communities are rallying behind
a small number of big efforts (e.g., PyTorch [9], TensorFlow [31],
TVM [46]). The combination of investments in specialized hardware
and large software communities focusing on performance allows
these efforts to thrive. Our realization is that the ML community
has made hardware accelerators accessible to nonspecialists (e.g.,
data scientists). The fact that the most popular ML frameworks
are open-source, creates a virtuous cycle whereby any hardware
vendor interested in the ML space must support these frameworks
well to get adoption. At the same time, these large open source
communities successfully tackle the labor-intensive problem of
providing specialized kernels for various hardware, e.g., a month
after Apple M1 was announced, TVM outperformed Apple’s
CoreML by 2× [134]. Hardware vendors can directly improve
the kernels’ performance or the hardware itself [21, 22, 25]. This
further helps adoption since the performance improves at each new
software and hardware release.

We argue that the best path forward for analytical DBMSs
is to embrace this tectonic shift and take advantage of the
groundswell of new hardware and software targeting AI workloads.
To demonstrate the viability of this idea, we propose and prototype
a new query processor which runs SQL queries atop tensor
computation runtimes (TCRs) such as PyTorch, TVM, and ONNX
Runtime [23]. We name our prototype Tensor Query Processor (TQP).
TQP transforms a SQL query into a tensor program and executes it
on TCRs. To our knowledge, TQP is the first query processor built
atop TCRs. Careful architectural and algorithmic design enables
TQP to: (1) deliver significant performance improvements over
popular CPU-based data systems, and match or outperform custom-
built solutions for GPUs; (2) demonstrate portability across a wide
range of target hardware and software platforms; and (3) achieve
all the above with parsimonious and sustainable engineering effort.

The above might appear surprising as specialized hardware
accelerators are notoriously hard to program, requiring much
customization to extract the best performance. Furthermore, their
programming abstractions differ sufficiently to make our goals of

https://doi.org/10.14778/3551793.3551833
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3551793.3551833

performance (G1), portability (G2), and parsimonious engineering
effort (G3) seemingly hard to reconcile. However, the key is a
compilation layer and a set of novel algorithms, which can map
the classical database abstraction to the prevalent one in machine
learning (ML), i.e.,mapping relational algebra to tensor computations.
This allows us to free-ride on existing labor-intensive efforts from
the ML community to port and optimize TCRs across all the new
specialized hardware platforms. The initial performance results
are encouraging. On GPU, TQP is able to outperform open-source
GPU databases in terms of query execution time. On CPU, TQP
outperforms Spark [145], and it is comparable to a state-of-the-art
vectorized engine, DuckDB [117], for several queries. Furthermore,
whenML and SQL queries are used in concert,TQP is able to provide
end-to-end acceleration for a 9× speedup over CPU baselines.

Pursuing our goals of portability and parsimonious engineering
effort, we make a deliberate decision to target existing tensor
APIs rather than customize lower-level operators. This decision
potentially leaves some performance on the table but leads to a very
sustainable long-term play, as TQP benefits from any performance
enhancement and optimization added to the underlying software
and hardware (e.g., [21]). To validate this proposition, we run TQP
on several different hardware settings: from CPUs, to discrete GPUs,
to integrated GPUs (Intel andAMD), to NN-accelerators (TPUs [72]),
and web browsers. Furthermore, TQP is able to run the full TPC-H
benchmark on both CPU and GPU with just around 8,000 lines of
code—this is quite an achievement considering that until 2021 no
GPU database was able to run all the 22 TPC-H queries [84].
Contributions. This paper makes the following core contributions:
• We propose Tensor Query Processor (TQP) that comprises a
collection of algorithms and a compiler stack for transforming
relational operators into tensor computations.
• With TQP, we demonstrate that the tensor interface of TCRs is
expressive enough to support all common relational operators.
• We evaluate the TQP approach extensively against state-of-the-
art baselines on the TPC-H benchmark.

Organization. §2 introduces some background on TCRs. §3
summarizes the challenges and the design choices we make. §4
introduces TQP, and §5 describes the algorithms used to implement
several key relational operators with tensor programs. Experiments
are in §6. Related works are in §7. The paper is concluded by §8.

2 BACKGROUND

In this section, we summarize the system support for tensor
computation (§2.1), and provide a taxonomy of the tensor
operations used throughout the paper (§2.2).
2.1 Tensor Computation Runtimes (TCRs)

The last years have witnessed an increase in the popularity of ML
models based on NNs [60]. While in the heydays, these models
were implemented manually in C++, data scientists now can take
advantage of several open-source ML frameworks simplifying the
authoring and deployment of NN models. TensorFlow [1] and
PyTorch [102] are considered the most popular of such frameworks.

ML frameworks follow a common architecture: at the top, they
have a high-level Python API1 where data is commonly represented
1Note that TCRs allow implementation in other languages too (e.g., Java [113], Rust [89],
C# [56]). Python is however the default language of choice by data scientists.

as multi-dimensional arrays called tensors, while computation is
expressed as a composition of tensor operations embedded into
the Python language. At the lower level, they have a runtime and
a dispatcher/compiler allowing to run the tensor operations over
different hardware backends such as CPU, GPU, custom ASICs, and
using single node execution, distributed [86], or mobile/edge [61].

Modern ML frameworks allow running computation in an
interpreted mode (often referred to as eager execution), or in a
compiled mode (graph execution), enabling code optimizations such
as common sub-expression elimination, operator fusion, code
generation [18], and removing Python dependency [137, 138].
Interpreted vs. compiled execution is a popular dichotomy in query
processing system implementations [75]. ML frameworks allow
both modalities and we explore the trade-offs involved when using
one vs. another, and the current limits of tensor compilers in §6.

We will refer to ML frameworks, runtimes [2, 23], and compilers
as tensor computation runtimes (TCRs) in the rest of the paper.

2.2 Tensor Operations

TCRs provide hundreds of tensor operations. We provide a brief
summary of the operators used in TQP, organized by category2.

Creation. This category contains all operations used to create
tensors, e.g., from_numpy, fill a tensor with specific elements (zeros,
ones, empty, fill, arange) or create a tensor using the same shape
of another tensor (zeros_like, ones_like).

Indexing and slicing. This category involves operations for
selecting one or more elements of a tensor using the square
bracket notation, or using indexing (index_select), a mask
(masked_select), or a range (narrow).

Reorganization. This category includes reshape, view, and
squeeze that reorganize the shape of a tensor (eventually by
changing only its metadata). gather, scatter reorganize the
elements of a tensor using an index, while sort sorts its elements.

Comparison. eq, lt, gt, le, ge, isnan are operators in this
category. Other operations are where that implements conditional
statements, and bucketize that implements binary search.

Arithmetic. add, mul, div, sub, fmod, remainder are in this
category. We also include logical operators such as logical_and,
logical_or, negative, and shift operations.

Join. This category allows to concat or stack multiple tensors.
Reduction. This category contains operations for calculating

simple aggregates (sum, max, min, mean), aggregates over groups
(scatter_add, scatter_min, scatter_max, scatter_mean),
logical reductions (all, any), as well as operations to build
histograms (bincount, histc), nonzero (returning the indexes of
non-zero elements), unique and unique_consecutive.

3 QUERY PROCESSING ON TCRS

In this section, we summarize the challenges (§3.2) and the design
principles we commit to (§3.3) when building TQP. First, we show
how relational operators can be implemented using tensor programs
with an example (§3.1).

2Since TQP is currently built on top of PyTorch, from now on we will use the PyTorch
naming convention. Note that similar tensor operations can be found on other TCRs.
Additionally, here we take the freedom to provide a different taxonomy than the one
found in the PyTorch documentation [115] and in our previous work [81].

2

3.1 Relational Operators as Tensor Programs

TCRs operate over data represented as tensors. Tensors are arrays
of arbitrary dimensions containing elements of the same data type.
0d-tensors are referred to as scalars, 1d-tensors as vectors, and 2d-
tensors as matrices. For a tensor of 𝑛 dimensions, its shape is a
𝑛-tuple where each element 𝑖 ∈ {0, 1, . . . , 𝑛} specifies the size of the
𝑖-dimension. For example, a matrix with 10 rows and 5 columns is a
2d-tensor of shape (10, 5). This paper only considers dense tensors
where each element is explicitly stored in memory.

ML practitioners implement programs (NNs) as a composition of
operations over tensors. While relational operations are commonly
expressed as queries in a standalone language (e.g., SQL), tensor
operations are embedded in a host language (e.g., Python), which
is used to implement control flows and etc. Next, we introduce
examples of implementing a filter using tensors.

Let us assume that we want to implement a simple filter
condition over the l_qantity column of the lineitem table:
where l_qantity < 24. First, we can represent l_qantity as a
1d-tensor of floating point numbers. We can then use the lt (less
than) operator to implement the filter condition (line 1 of Listing 1).
lt generates a boolean mask which is then used as a parameter of
the masked_select operator to generate the filtered version of the
l_qantity column vector (line 2 of Listing 1).

Listing 1: Filter implementation using bitmaps.

1 mask = torch.lt(l_quantity, 24)
2 output = torch.masked_select(l_quantity, mask)

This implementation is almost identical to the Bitmap-based
representation [101] of filters in vectorized query processors [110,
118]. On CPU, TCRs have SIMD implementations for several
condition and intersection operators. An alternative is to use
indexes rather thanmasks. This is commonly referred to as Selection
Vector representation [101, 122], and can be similarly implemented
using tensor operators lt, nonzero, and index_select.

Listing 2 shows another implementation. Here, we iterate over
all the elements of the input tensor and use a Python conditional
statement. This implementation does not take advantage of any
tensor operation beyond creating the output tensor.
Listing 2: Filter implementation using Python control flow.

1 output = torch.zeros_like(l_quantity), j = 0
2 for i in range(l_quantity.shape[0]):
3 datum = l_quantity[i]
4 if datum < 24:
5 output[j] = datum, j = j + 1
6 output = output[:j, :]

Table 1 shows the performance of the two implementations. The
implementation using Python control flow is considerably slower.
, and GPU execution of Python control flow is slower than CPU
execution. This result highlights one of the design choices (§3.3)
we make in TQP: avoid the use of data-dependent code in Python.

Table 1: Execution times of filter over ∼6M elements in

interpreted (Torch) and compiled (TorchScript) modes.

Implementation
CPU GPU

Torch TorchScript Torch TorchScript

Bitmap 36.6ms 36.6ms 2.9ms 2.9ms
Python 23s 22.7s 200.3s 200s

3.2 Challenges

Implementing a query processor on TCRs requires overcoming
several challenges. After all, TCRs are built for authoring and
executing NN models, not relational queries.

C1:Expressivity. Relational queries can contain filters with
fairly complex expressions (e.g., like, in), sub-queries, group-by
aggregates, joins (e.g., natural, anti, semi, outer), etc. It is not clear
whether the tensor operations currently available in TCRs are
enough to support all these relational operators.

C2:Performance. Even if a relational operator is implementable
using tensors, this does not automatically lead to good performance,
as the example in Listing 2 suggests. In fact, it is not clear whether
tensor programs can achieve good performance, beyond NNs.

C3:Data Representation. To use TCRs as execution engines,
relational tables must be transformed into a tensor representation.
Previous approaches have explored this challenge (e.g., [66]), but
their cost of translation is not negligible. Furthermore, TCRs
commonly do not support strings or date data types.

C4:Extensibility. Running relational queries over TCRs makes
running a query seamlessly over different hardware (CPU, GPU,
ASICs, etc.) and backends (single node, distributed, edge, web
browser, etc.) possible. A single monolithic compiler architecture
does not work in all situations, therefore TQP’s design must be
flexible enough to address all these use cases.

3.3 Design Choices

When building TQP, we embrace the following design choices.
DC1:Avoid implementing data-dependent control flow in Python.

As Table 1 suggests, computation in TQPmust use tensor operations
as much as possible. Note that for loops and conditionals over
schema elements are acceptable (e.g., loops over the columns of a
table). This design choice allows us to address C2 and achieve G1.

DC2:Tensor-based columnar format for input tabular data.
Relational data must be transformed into the tensor format. To do
this, TQP adopts a columnar representation of tables, and considers
each column in a table as a tensor. We provide more details on our
data representation in §4.1. This design choice addresses C3.

DC3:Adherence to TCRs’ API. This design choice is required for
achieving G2 and G3. In fact, if we start extending TCRs with new
features and operators, eventually the system will hinter portability
and increase the engineering effort because we will have to support
them on any hardware. Hence, we take advantage of existing TCRs’
API rather than try to extend them. With this design choice, we are
also able to address C1.

DC4:Extensible infrastructure allowing easy integration with
relational and ML frameworks. Having a flexible infrastructure
is of paramount importance since we desire to ride the wave
of investments in ML. Therefore, we embrace an extensible
architecture that allows different output target formats (e.g.,
PyTorch, ONNX), composed of a core compiler, pluggable frontends
(e.g., query parser and optimizer). This design choice addresses C4.

4 TENSOR QUERY PROCESSOR (TQP)

In TQP, relational operators and ML models are compiled into
tensor programs using a unified infrastructure, extended from
Hummingbird [95, 97]. Here, we focus on the relational operator
part, as the ML part was described in [97].

3

Sales

1
2
3
…
n

sid date county

2

9

5

…

6

12-02-2022

22-02-2022

03-01-2022

…

22-01-2022

King

King

Napa

…

Butte

In
pu

t t
ab

le

Sales

1
2
3
…
n

sid
(nx1)

…436

date
(nx1)

…565

…465

county
(nx5)

…

…778In
pu

t t
ab

le
 in

 te
ns

or
 fo

rm
at

2

9

5

…

6

75 105 110 103 0

75 105 110 103 0

78 97 112 97 0

… … … … …

66 117 116 116 101

Figure 1: TQP represents input tables in a columnar format

with a 2d-tensor per column.

TQP Overview. TQP’s workflow has two phases: (1) compilation:
an input query is transformed into an executable tensor program;
(2) execution: input data is first transformed into tensors, and
then fed into the compiled program to generate the query result.
Currently, TQP uses vanilla PyTorch in the compilation phase as
the implementation target for the tensor programs. If necessary,
PyTorch programs are lowered into different target formats for
portability or performance goals. The selection of the hardware
device to target is generally made in the compilation phase. Next,
we first describe how TQP represents relational data using tensors
(§4.1), and then describe each phase in detail (§4.2 and §4.3).

4.1 Data Representation

Before executing the query, TQP must convert the input (tabular)
data to tensors. Databases often manage and convert data into their
own proprietary format, and TQP is no different. TQP internally
represents tabular data in a columnar format with virtual IDs [29],
as illustrated in Figure 1. Data for each column is stored as a
(𝑛 × 𝑚) tensor, where 𝑛 is the input number of rows, and 𝑚

is the length required to store the values. The translation logic
is different depending on the column data type. For example,
numerical columns (sid in Figure 1) can be directly represented
as (𝑛 × 1) tensors. The conversion of numerical columns to tensors
is often zero-copy. TQP represents date data in (𝑛 × 1) numeric
tensors as the number of nanoseconds since some pre-defined epoch.
In this case, (de)serialization may be required depending on the
source/target date representation. Finally, TQP represents string
columns using (𝑛 ×𝑚) numeric tensors, where𝑚 is the maximum
character length of any string for that column. Given a string, TQP
stores a character per tensor column and right-pads it with 0s if
its length is smaller than𝑚. We are actively working on adding
support for encoded data (e.g., bit packing, run-length encoding,
dictionary encoding) and more compact string representations [16].

4.2 Query Compilation

TQP’s compilation phase is composed of four main layers, as shown
in Figure 2: (1) The Parsing Layer (§4.2.2) converts an input SQL
statement into an internal intermediate representation (IR) graph
depicting the query’s physical plan, which is generated by an
external frontend database system. The architecture decouples
the physical plan specification from the other layers, therefore
allowing to plug different frontends. (2) The Canonicalization
and Optimization Layer (§4.2.3) performs IR-to-IR transformations.
(3) The Planning Layer (§4.2.4) translates the IR graph generated in
the previous layer into an operator plan in which each operator is

Parsing Layer

Planning Layer

Execution Layer

SQL Query

IR Graph

Operator Plan

Tensor Query Processor

Tensor program for Sort

Physical Plan

ONNX

…

Tensor program for Join

Tensor program for Filter

TVM PyTorch TorchScript

Target Formats

Canonicalization and
Optimization Layer

Optimized IR Graph

Sort Operator

Figure 2: TQP’s compilation phase.

mapped into a tensor program implementation. (4) The Execution
Layer (§4.2.5), using the operator plan, generates an executor which
is the program that runs on the target TCR and hardware. Next,
before describing each layer inmore detail, we give a quick overview
of TQP’s intermediate representation (IR).

4.2.1 Intermediate Representation (IR). The IR is a graph-based
data structure. It consists of a list of operators and variables. Each
operator corresponds to a node in the graph, and it contains:
(1) a list of input variables; (2) a list of output variables; (3) an
alias identifying the operator type; and (4) a reference to the
corresponding operator instance in the original physical plan. The
latter is used to instantiate the tensor program implementing the
operator. For example, to create a filter, TQP needs to access the
expressions contained in the original physical operator.

Edges represent data (tensors) flowing between operators. In
particular, an edge connects an output variable from an operator
to an input variable of another operator. A variable contains: (1) a
unique identifier, and (2) the corresponding frontend column name
in the original plan, which is used to translate expressions. When a
variable is created, a unique identifier is generated deterministically
based on information available in the graph. Variables in the IR
are generated as follows. First, TQP generates a variable for each
column in the input table. Then, these variables can be used as input
to many operators; however, a new variable will always be created
for an output of an operator. Thanks to this design: (1) properties
(e.g., sorting information) can be immutably attached to columns;
(2) the IR is easier to debug because variables, once defined, are
never changed; and (3) TQP can detect at runtime when a column
is not used anymore and safely garbage-collect it.

4.2.2 Parsing Layer. The goal of the Parsing Layer is to translate
input queries into TQP’s internal IR. This goal is accomplished in
two steps: (1) input queries are parsed, optimized, and exposed as

4

frontend-specific physical query plans; and (2) a frontend-specific
parsing logic translates the physical plan into an IR plan.

In its current version, TQP supports queries expressed as Spark
SQL statements, and it uses the PySpark API to parse, optimize, and
return the physical plan in a JSON format. We plan to add support
for Calcite [39], DuckDB [117], and eventually Substrait [26]3. Then
the Spark parser constructs the internal IR version of the physical
plan using a DFS post-order traversal. If an unsupported operator
is found in the plan, this phase will fail with an exception. The list
of operators supported by the IR is extensible (DC4).

4.2.3 Canonicalization and Optimization Layer. This layer
implements IR graph transformations similarly to a classical
rule-based optimizer. Rules are applied to the IR graph in two
stages. In the first stage, canonicalization, the rules are used to
eliminate any of the frontend-system idiosyncrasies in the IR graph.
For example, Apache Spark returns a projection operator with no
inputs for count * statements. In the second stage, optimization,
rules rewrite the IR graph for obtaining better performance. While
we did not explore in depth the optimization space enabled by
TQP’s design, we show that hand-optimized tensor programs are
more efficient than the one currently generated by TQP in §6.6.

4.2.4 Planning Layer. In this layer, TQP transforms the optimized
IR graph into an operator plan composed of PyTorch tensor
programs implementing each operator in the IR graph. In
§5, we describe some operator implementations in detail. The
implementation of the Planning Layer is straightforward. For
each operator in the IR graph, TQP fetches the corresponding
implementation containing the tensor program from a dictionary,
which is then instantiated with the IR operator’s reference to the
frontend physical operator instance.

4.2.5 Execution Layer. Here the operator plan is wrapped around
a PyTorch executor object. This object is responsible for: (1) calling
the tensor programs in the operator plan following a topological
order; (2) wiring the output tensors generated by each program
into the successive one; and (3) keeping track of tensor references
to garbage collect them if not used anymore. Once the executor
program is generated, TQP provides options to compile it into
different target formats in addition to PyTorch interpreted execution.
Currently, TQP allows lowering the executor into the TorchScript
and ONNX formats, as well as to use TVM to compile it directly
into machine-level code. Note that not all queries can be compiled
into all formats since not all tensor operations are supported by all
the target formats.

4.3 Execution

Once the executor program is generated, it can be executed over
the input data. The program automatically manages (1) converting
data into the tensor format; (2) data movements to/from device
memory; and (3) scheduling of the operators in the selected device.
Once the data is in the proper format and on the desired device, all
the operators are executed sequentially. Regarding parallelization,
TQP exploits the tensor-level intra-operator parallelism provided by
the TCRs. However, given the poor scalability performance (§6.3),
3Note that we currently only support Apache Spark for relational frontends, not in
general. TQP, in fact, supports all the ML frontends available in Hummingbird [95].

we are exploring support for inter-operator parallelism and data-
parallel strategies. Once the executor completes, TQP returns the
query result in tensor, NumPy, or Pandas formats.

5 OPERATOR IMPLEMENTATION IN TQP

We described how TQP uses the Planning Layer to translate
relational operators in the IR graph into tensor programs. Here
we provide an overview of a few program implementations. TQP
provides tensor-based implementations for the following relational
operators: selection, projection, sort, group-by aggregation (sort-
based), natural join (hash-based and sort-based), non-equi, left-
outer, left-semi, and left-anti joins. TQP supports expressions
including comparison and arithmetic operations, functions on
date data type, in, case, like statements, as well as aggregate
expressions using sum, avg, min, max, and count aggregates (with
and without distinct). Finally, TQP supports nulls, and subqueries
(scalar, nested, and correlated), and predict UDF4 [93, 94]. With
all the above, TQP is able to compile and execute all 22 queries
of the TPC-H benchmark (C1). Interestingly, to support the full
TPC-H benchmark, only the tensor operations listed in §2.2 are
required, and we did not have to introduce any additional custom
tensor operators (DC3). Due to space constraints, we only describe
how TQP implements relational expressions with tensor operations
(§5.1), and implementations for two representative operators: join
(sort- and hash-based, in §5.2 and §5.3, respectively), and group-by
aggregation (§5.4). Finally, note that the filter implementation in
TQP is close to the Bitmap representation described in §3.1.

5.1 Expressions

Relational expressions such as sum(l_extendedprice ∗ (1 -
l_discount)) can be found in projection operators, filter conditions,
etc. In an expression tree, each leaf node represents a column or
a constant value (e.g., l_extendedprice) and each branch node
represents an operator (e.g., ∗). TQP keeps an internal dictionary
that maps operators to their corresponding tensor operations, e.g., ∗
to torch.mul. To implement an expression with tensor operations,
TQP then performs a post-order DFS traversal on the expression
tree. For each leaf node, TQP fetches (or generates) the proper
column-tensor (constant value). For each internal operator, TQP
retrieves the corresponding tensor operation (or a series of tensor
operations) from the internal dictionary. In this way (and with the
help of Python lambda functions), TQP generates a chain of tensor
operations representing the evaluation of the expressions. As an
example, from Q21 in TPC-H, the expressions o_orderstatus
= ‘f’ and receiptdate > l_commitdate is implemented
as torch.logical_and(torch.eq(o_orderstatus,[70])
,torch.gt(l_receiptdate,l_commitdate)), where [70] is a
1x1 tensor storing the ASCII value for the constant ‘F’.

5.2 Sort-Based Join

TQP adopts a late materialization strategy for joins, similar to the
one commonly used in columnar databases [30, 87]. TQP takes only
the columns in the join predicate as input to the join, and the output
is a set of pairs of indexes identifying the records for which the join
4While generic UDFs are hard to support in TQP because of data conversion and data
representation mismatches, Spark vectorized UDFs [17] can be supported on CPU.

5

Algorithm 1 Sort-Based Join
Input: data: input columns passed as an array of tensors.
Output: an array of tensors representing the join output.

1: left, right ← getJoinKeyColumns(data)
⊲ Sort join keys
2: left, leftIdx ← sort(left)
3: right, rightIdx ← sort(right)
⊲ Build histograms for the left and right key columns
4: leftHist, rightHist ← bincount(left), bincount(right)
⊲ Compute the number of rows for each pair of matching keys
5: histMul ← mul(leftHist, rightHist)
⊲ Compute the prefix sums of histograms
6: cumLeftHist ← cumsum(leftHist, dim = 0)
7: cumRightHist ← cumsum(rightHist, dim = 0)
8: cumHistMul ← cumsum(histMul, dim = 0)
⊲ Initialize the output size and output offsets
9: outSize← cumHistMul [−1]
10: offset ← arange(outSize)
⊲ Find the bucket of matching keys to which each output belongs

11: outBucket ← bucketize(offset, cumHistMul)
⊲ Compute the indexes from left and right in the join output

12: offset .sub_(cumHisMul [outBucket] − histMul [outBucket])
13: leftOutIdx← leftIdx [cumLeftHist [outBucket]−leftHist [outBucket]
+ div(offset, rightHist [outBucket], rounding = “floor”)]

14: rightOutIdx← rightIdx [cumRightHist [outBucket]−rightHist[outBucket]
+ remainder(offset, rightHist [outBucket])]

15: return createOutput(data, leftOutIdx, rightOutIdx)

0

0

1

1

…

0

0

0

1

1

…Sorted left

Sorted right

2

2

…

3

2

…

leftHist rightHist

6

4

…

2

4

…

3

5

… cumHistMul

6

10

…

histMul

0

1

2

…

8

…

offset

Binary search to
find the bucket

x

cumLeftHist cumRightHist

offset

𝑙𝑒𝑓𝑡𝑂𝑢𝑡𝐼𝑑𝑥	 = 	2 +
8 −6
2

Previous
bucket
cumLeftHist

offset

Previous bucket
cumHistMul

rightHist

𝑟𝑖𝑔ℎ𝑡𝑂𝑢𝑡𝐼𝑑𝑥	 = 3 + 8 − 6 	%	2

Previous
bucket
cumRightHist

rightHist

Figure 3: An example of the sort-based join implementation.

predicate succeeds. The sort-based equi-join algorithm is shown in
Algorithm 1, where, to simplify the description, we describe the case
in which two integer columns are joined. With a few modifications,
the algorithm is also able to support non-equi joins, left-semi joins,
and outer joins. We use the typewriter font (e.g., bucketize) to
denote tensor operations, and the capital font (e.g., createOutput)
to denote class methods. Figure 3 further illustrates the algorithm.

First, TQP sorts the join-key columns from each table (lines 1 to 3
in Algorithm 1, ➊ in Figure 3). Then, ➋, TQP builds two histograms
for the join keys from left and right, respectively, i.e., TQP counts
the number of occurrences for each unique join key (line 4). Then,➌

by multiplying the values (element-wise) of the histograms (line
5), TQP computes the bucket sizes: the number of output rows
for each matching join key from left and right. Afterward, TQP
computes the prefix sums for the left and right histograms (➍), as
well as their element-wise multiplication (➎) (lines 6 to 8). The
prefix sums will be used later to retrieve, from each join output, the
position in left and right. The total size of the output of the join is
then computed as the last element of the prefix sum containing the
bucket sizes (line 9), and ➏ TQP generates an index array (offset)
of the same size (line 10). Then, ➐ TQP performs a parallel binary
search on the prefix sum containing the bucket sizes to find the
matching join key (bucket) to which each row in the output of the
join belongs (line 11). Next, ➑ TQP computes the indexes from left
and right that generate each row in the output of the join. Figure 3
shows the computation process for row 8 in the join output of the
example. To compute the indexes from left and right that are part
of a given offset in the output of the join, TQP first subtracts offset
by the prefix sum of bucket sizes prior to the current bucket (line
12). Now offset becomes the offset in each bucket of the matching
join keys. TQP then adds to the offset the previous bucket from the
respective prefix sum histogram (cumLeftHist and cumRightHist,
respectively), and adds the result (quotient for leftOutIdx, remainder
for rightOutIdx) of offset divided by the number of join keys from
right in the current bucket of matching join keys (lines 13 to 14).
Finally, for each row in the join output, TQP knows which rows
from left and right contributed to it. It then generates the join
output (line 15, not depicted in Figure 3). It is important to note that
all computations in this join implementation are achieved using
tensor operations, with only minimal usage of Python code.

5.3 Hash-Based Join

The hash equi-join algorithm is shown in Algorithm 2. The
definition of the input and output here is the same as in §5.2. The
algorithm is similar to the classical hash join algorithm, except that
the build and probe phases are interleaved and repeated as many
times as the maximum number of elements that share a hash value
(line 6). The algorithm is as follows: TQP first generates the indexes
(line 2) and the hash values (line 3) for the left and right tables.
Afterward, TQP computes a histogram over the table on which
the hash table will be built (left in this case, line 4) and checks the
maximum number of elements in a hash bucket (line 5). Then, TQP
repeatedly builds a hash table (lines 7 and 8) and probes it (lines
11 to 14) to find matching keys (lines 15 to 17). Matching keys are
accumulated across iterations (lines 18 and 19). In each iteration,
TQP also keeps track of the indexes that are stored in the hash table
such that they will not appear in subsequent iterations (lines 9 and
10). To achieve this, let𝑚 be the hash table size; TQP appends an
additional (m + 1)-th bucket to the hash table and uses it to redirect
the already scattered indexes. Note that when there are no hash
collisions, TQP skips the logic of lines 9 to 10 and 18 to 19. This
path is therefore close to the optimal.

Compared to the sort-based join, when there are no hash
collisions, this implementation is around 30% to 50% faster on
CPU and 2× faster on GPU. When there are hash collisions, it is
faster than the sort-based join for cases in which at most around 15
elements share a hash value; when there are more than 15 elements

6

Algorithm 2 Hash-Based Join
Input: data: input columns passed as an array of tensors.
Output: an array of tensors representing the join output.

1: left, right ← getJoinKeyColumns(data)
2: leftIdx, rightIdx ← arange(left .shape [0]), arange(right .shape [0])
⊲ Compute the hash values for join keys (m is the max hash table size)
3: leftHash, rightHash← remainder(left,m), remainder(right,m)
⊲ Build the histogram of hash values for the left join keys
4: hashBincount ← bincount(leftHash)
5: maxHashBucketSize← max(hashBincount)
⊲ Build and probe the hash table in an interleaved way
6: for i ∈ 𝑟𝑎𝑛𝑔𝑒 (maxHashBucketSize) do
7: hashTable← full((m + 1,),−1)
8: hashTable.scatter_(0, leftHash, leftIdx)
⊲ Skip those scattered for future iterations by setting their hashes to m
9: leftIdxSct ← masked_select(hashTable, hashTable ≥ 0)
10: leftHash[leftIdxSct] ← m
⊲ Probe the current hash table and get the left and right indexes

11: leftCandIdx ← hashTable [rightHash]
12: validKeyMask ← leftCandIdx ≥ 0
13: validLeftIdx ← masked_select(leftCandIdx, validKeyMask)
14: validRightIdx ← masked_select(rightIdx, validKeyMask)
⊲ Find the indexes that have matching join keys

15: matchMask ← left [validLeftIdx] == right [validRightIdx]
16: leftMatchIdx ← masked_select(validleftIdx,matchMask)
17: rightMatchIdx ← masked_select(validrightIdx,matchMask)
⊲ Append the indexes to the global results

18: leftOutIdx ← cat((leftOutIdx, leftMatchIdx))
19: rightOutIdx ← cat((rightOutIdx, rightMatchIdx))
20: return createOutput(data, leftOutIdx, rightOutIdx)

Algorithm 3 Aggregation
Input: data: input columns passed as an array of tensors.
Output: the aggregation output as an array of tensors.

1: grpByCols← getGroupByColumns(data)
⊲ Generate unique groups
2: grps← cat(grpByCols, dim = 1)
3: grps, grpsInvIdx ← sort(grps)
4: data← [col [grpsInvIdx] for col in data]
5: grpsUnique,invIdxs←uniqueConsecutive(grps, inverse=True)
⊲ Evaluate the aggregation expression
6: return [evaluate(data, grpsUnique, invIdxs)]

sharing a hash value, the sort-based join is faster. We are currently
working on a partitioned hash-join implementation.

5.4 Aggregation

Algorithm 3 shows the pseudocode of the aggregation
implementation. First, TQP horizontally concatenates the
values of the group-by columns (lines 1 and 2). TQP then sorts the
values of the concatenated columns using radix sort and permutes
all the input data columns according to this sorted order (lines 3
and 4). Using uniqueConsecutive, TQP eliminates all but the first
key from every consecutive group of equivalent keys. Concurrently,
TQP computes the inverted indexes that indicate which bucket
(unique key) each row in the sorted list ends up in (line 5). Finally,
with the unique key list and inverted indexes, TQP evaluates the
aggregate expression for all groups. This last operation makes use
of the expression generated (at compile time) as described in §5.1.

6 EVALUATION

The evaluation aims to answer the following questions: (1) On
CPU, is TQP’s performance comparable to other data processing
systems on a single core (§6.1)? (2) On GPU, is TQP’s performance
comparable to other GPU databases (§6.2)? (3) How well does TQP
scale with the increase in the number of CPU cores and dataset sizes
(§6.3)? (4) What is the cost/performance trade-off of TQP on GPU
(§6.4)? (5) Which operation takes the most time in query execution
(§6.5)? (6) Can hand-optimized query plans improve TQP’s query
time (§6.6)? (7) Can TQP accelerate workloads mixing ML and
relational queries (§6.7)? (8) What are the overheads (§6.8)? (9)
Can TQP run over different hardware and software backends while
minimizing the engineering effort (§6.9 and §6.10)?
Baseline systems. Our goal is to compare TQP with state-of-
the-art query processing systems for different hardware settings.
Specifically, for CPU execution, we compare TQP with Apache
Spark [145] (recall that Spark and TQP share the same query plans)
and DuckDB [117]: a state-of-the-art vectorized engine. For GPU
execution, we compare TQP with two well-known open-source
GPU databases: BlazingSQL [3] and OmnisciDB [7].
Hardware and software setup. For all the experiments (except
when noted otherwise), we use an Azure NC6 v2 machine with 112
GB of RAM, an Intel Xeon CPU E5-2690 v4 @ 2.6GHz (6 virtual
cores), and an NVIDIA P100 GPU (with 16 GB of memory). The
machine runs Ubuntu 18.04 with PyTorch 1.11, torch-scatter 2.0.9,
BlazingSQL 21.8.1, PySpark 3.1.1, OmnisciDB 5.9.0, DuckDB 0.4.0,
RAPIDS 21.08, CUDA 10.2, TVM 0.8 and scikit-learn 0.21.3.
Experimental setup. We use the TPC-H benchmark [49] which
consists of 22 queries. We use the parameters specified in the
query validation sections in [49]. We generate data at different
scale factors (from 1 to 10 where 1 means 1 GB of data in total5)
using the dbgen tool. We load the generated data from disk into
Pandas dataframes. All dataframes use the data types as specified
in the benchmark, except for decimals: we use doubles for all
systems since TQP does not support decimals yet. Subsequently,
we register/convert each dataframe into each system’s internal
format, e.g., Spark dataframes for Spark6, PyTorch tensors for TQP,
CUDA dataframes for BlazingSQL, etc., and move the data to the
GPU, when applicable. We measure the total query execution time,
including the time for generating the output. For each experiment,
we do 10 runs where the first 5 are for warm-up. The reported
numbers are median values of the last 5 runs.
Key takeaways. (1) TQP’s query execution time on CPU using
a single core is better than Spark’s over the same physical plans;
however, (2) TQP’s scalability on CPU is poor because of PyTorch
lacking parallelization in some operators’ implementation and its
intra-operator parallelism model. (3) TQP is, in general, slower than
DuckDB on CPU, but for a few queries, TQP is comparable or even
better. (4) Hand-optimized plans can improve TQP’s performance,
which suggests that a TCR-aware query optimizer is required to
achieve the best performance. (5) TQP’s query execution time on
GPU is usually better than both BlazingSQL’s and OmnisciDB’s,
and TQP supports more queries than they do. (6) When ML
5Note that some queries can run on scale factors larger than 10 in GPUs, thanks to
TQP’s ability to push projections into data conversion. We are working on supporting
out-of-memory computation by leveraging PyTorch’s DataLoader [19].
6For Spark, we additionally load the working datasets in memory using cache.

7

Table 2: Query execution time (in seconds) on the TPC-

H benchmark (scale factor 1). Bold numbers highlight the

best performance for the specific setup (CPU or GPU). We

evaluate TQP in two modalities: interpreted (TQP) and

compiled using TorchScript (TQPJ). N/A means the query

execution did not finish because of an error. TQPJ currently

does not support materialized views.

Query
CPU (1 core) GPU

Spark DuckDB TQP TQPJ Blazing Omnisci TQP TQPJ

Q1 2.261 0.664 7.535 7.301 0.216 0.095 0.027 0.026

Q2 8.751 0.101 0.629 0.577 0.238 0.351 0.039 0.028

Q3 3.669 0.273 1.154 1.165 0.128 0.293 0.027 0.024

Q4 4.719 0.216 1.050 1.087 0.093 0.292 0.020 0.018

Q5 6.963 0.302 2.459 2.963 0.164 0.064 0.048 0.042

Q6 0.381 0.156 0.143 0.073 0.045 0.047 0.003 0.002

Q7 5.569 0.430 2.236 1.931 0.244 0.067 0.042 0.035

Q8 4.034 0.278 2.460 2.503 0.215 0.079 0.050 0.039

Q9 17.61 2.533 4.518 4.616 0.569 0.072 0.105 0.092
Q10 15.98 0.430 1.168 1.184 0.173 0.740 0.057 0.052

Q11 1.047 0.034 0.476 0.324 N/A 0.084 0.016 0.009

Q12 4.063 0.309 0.976 0.966 0.069 0.062 0.025 0.021

Q13 6.081 0.181 9.379 9.197 0.303 0.069 0.153 0.136
Q14 0.509 0.171 0.124 0.096 0.076 N/A 0.007 0.005

Q15 2.640 0.291 0.133 N/A N/A 0.086 0.129 N/A
Q16 16.94 0.093 3.664 3.699 N/A 3.689 0.320 0.301

Q17 3.165 0.381 2.303 2.466 0.121 0.132 0.061 0.051

Q18 6.942 0.765 2.245 2.406 0.204 0.593 0.053 0.048

Q19 2.300 0.419 1.577 1.316 0.188 0.058 0.042 0.036

Q20 4.232 0.276 2.032 1.975 0.149 N/A 0.048 0.041

Q21 12.39 0.932 25.49 24.25 N/A N/A 0.158 0.151

Q22 3.919 0.069 0.315 0.296 N/A N/A 0.011 0.010

model prediction and SQL queries are mixed together, TQP is
able to provide end-to-end acceleration which delivers up to 9×
performance improvement over CPU baselines. (7) TQP on GPU
performs favorably, and the query time speedup justifies the dollar
cost increase compared to CPU-only systems. (8) TQP can run
queries on different hardware and software backends (including
even integrated GPUs and web browsers), with orders of magnitude
fewer lines of code required compared to the baseline systems.

6.1 Single Core Execution on CPU

In this first experiment, we use a single CPU core and TPC-H at
scale factor 1. The results are shown in Table 2 (under CPU). We
compare Spark and DuckDB vs. TQP, using both interpreted (TQP)
and compiled execution with TorchScript (TQPJ). Spark, DuckDB,
and TQP can support all 22 queries.

In terms of query time, TQPJ is either comparable to TQP
or better. This is because TorchScript removes Python code
dependency and provides optimizations not offered by vanilla
PyTorch [52]. TQP outperforms Spark for most queries, sometimes
by an order of magnitude (e.g., Q10, Q15, and Q22). Given that TQP
uses the same physical plans as Spark, this suggests that the tensor
abstraction is indeed good for executing relational queries. The
practical reasons are: (1) TQP is column-oriented, while Spark is
row-oriented. This makes the former better suited for analytical
queries; (2) some tensor operations use SIMD instructions, while
Spark does not exploit vectorization; (3) in TQP, tensor operations

are implemented in C++, while Spark is Java-based; (4) Spark is
designed as a scale-out system. For queries (i.e., Q1, Q13, and Q21)
where TQP is slower than Spark, the reasons are: (1) TQP’s left anti-
join and left outer-join implementations are not optimized; (2) the
performance of the uniqueConsecutive operator in PyTorch is not
optimal. Finally, TQP has better performance than DuckDB only for
3 queries. For the other queries, DuckDB clearly outperforms TQP.
If we exclude Q1, Q13, and Q21 (discussed above), TQP’s query
times are within the same order of magnitude as DuckDB’s. To
evaluate whether this poor performance compared with DuckDB
is due to bad query plans or the tensor abstraction, we hand-code
better query plans and tensor programs in §6.6 and show that TQP
can match and even outperform DuckDB on CPU.

6.2 Execution on GPU

In this experiment, we evaluate the performance of TQP on GPU.
The results are shown in Table 2 (under GPU). Starting from TQP
vs. TQPJ, as in the CPU case, TQPJ outperforms TQP. Compared
with the baselines, TQP (interpreted or compiled) outperforms
BlazingSQL (Blazing in the table) for all the queries, and it
outperforms OmnisciDB (Omnisci) on 15 queries out of the 18
queries supported by OmnisciDB. For the remaining 3 queries, TQP
achieves query times within a factor of 2 from OmnisciDB. Note
that TQP supports all 22 TPC-H queries, while BlazingSQL and
OmnisciDB only support 17 and 18 queries, respectively.

Finally, if we compare the best CPU performance versus the best
GPU ones, in general, we see that the query times on GPU are
1.5× to 48× better than the CPU ones (single core), except for Q16
where DuckDB is about 3× faster than the best-performing GPU
system. This somehow counter-intuitive result is due to the fact
that, at scale factor 1, GPU resources are not completely saturated.
Therefore, it makes sense to explore how these systems scale with
more data and more available core. This is what we explore next.

6.3 Scalability

For this and the following experiments, we select a representative
set of queries: complex aggregation (Q1), joins and filters (Q2),
simple filters (Q6), complex joins (Q9), simple join and aggregation
(Q14), a complex mix of join, aggregation, and sub-queries (Q18).
6.3.1 Scaling the Number of Cores. In this experiment, we scale
the number of available CPU cores from 1 to 6 over TPC-H at
scale factor 1. Figure 4a compares the scaling performance of Spark,
DuckDB, and TQP. Spark has the best scalability trend lines almost
for all queries. DuckDB also scales well. TQP’s scaling performance
is, however sub-optimal, and for some queries increasing the
number of cores provides no benefits. There are two reasons:
(1) PyTorch uses intra-operator parallelism , which is not as
efficient as the shuffle [145] or morsel-based [85] approaches in
Spark and DuckDB, respectively; (2) some PyTorch operators run
on a single core (e.g., unique and unique_consecutive [116]
used in aggregation). We are investigating how to overcome
this limitation by adding data-parallel support to TQP leveraging
PyTorch Distributed Data Parallel [24, 86] or by adding parallel
operator implementations.

6.3.2 Scaling the Data. In this experiment, we scale the dataset
from 1 GB to 10 GB. In Figure 4b, we compare the scalability

8

(a) Query execution time over different numbers of cores. (b) Query execution time over different scale factors.

Figure 4: Scalability on selected queries from TPC-H. For TQP, we report the best time of the interpreted (PyTorch) and

compiled (TorchScript) versions. In (a), the scale factor is 1. In (b), all CPU methods use 6 cores. BlazingSQL throws errors

for Q9 at scale factors 2, 5, and 10. OmnisciDB does not support Q14. The y-axes in (b) are in (symmetric) log scale.

Figure 5: Cost/performance trade-off for TQP on selected

queries at scale factor 10. We plot the speedups of TQP on

variousGPUs (NVIDIAT4, P100 andV100) overDuckDBona

baseline CPU-only machine. The dashed lines represent the

query time speedups required by the GPU executions to be

more cost-effective compared to the DuckDB CPU baseline.

performance of CPU implementations running over 6 cores (Spark,
DuckDB), as well as GPU systems (BlazingSQL and OmnisciDB).
In general, we see that TQP CPU scales the worst for almost all
queries (only Spark is worst for Q6 and Q14), while GPU systems
scale better than the CPU ones. For Q1, OmnisciDB provides the
best performance, followed by TQP GPU. For Q2, Q14, and Q18,
TQP GPU has the best performance, while for Q6, TQP GPU is
comparable to OmnisciDB. Finally, for Q9, OmnisciDB has the best
performance. Q9 has six joins, and OmnisciDB is able to better use
the GPU resources. This query is memory-bound, and the memory
bandwidth of the P100 makes it much faster on GPU than on CPU.

6.4 Cost/Performance Trade-off

We now provide a cost/performance analysis of TQP on GPU
compared to a CPU-only baseline. Specifically, we select a general-
purpose (CPU-only) VM in Azure with a dollar cost similar to
the cheapest VM equipped with GPU (NC4as_T4_v3), and with
similar main memory size. Following these constraints, we select
a D2ds_v5 with 8 CPU cores and 32GB of memory. Then we
compare the performance of DuckDB on the D2ds_v5 with TQP
on (1) NC4as_T4_v3 (with an NVIDIA T4 GPU, about 15% more
expensive than the CPU-only machine), (2) NC6s_v2 (with an
NVIDIA P100, around 4.6× more expensive than the CPU-only
VM), and (3) NC6s_v3 (with an NVIDIA V100, around 6.6× more
expensive than the CPU-only VM). For each GPUVM type, we show
the query time speedup required to be more cost-effective than the

DuckDB baseline. That is, for the T4, the speedup provided by TQP
has to be more than 15% to justify the cost increase of the T4 VM
compared to the DuckDB CPU baseline, 4.6× for the P100, 6.6× for
the V100. The results for scale factor 10 are shown in Figure 5 for a
few representative TPC-H queries. As shown, TQP on GPU is more
cost-effective compared to DuckDB on the CPU-only machine: for
6 of the 6 selected queries (17 of the 21 supported queries7 in the
full TPC-H) for the T4; 5 of 6 (10 of 21 in the full TPC-H) for the
P100; and 5 of 6 (9 of 21 in the full TPC-H) for the V100.

6.5 Performance Breakdown

In this experiment, we show the major contributing factors to the
query execution time. TQP is integrated with TensorBoard [13],
which provides performance breakdowns and makes it easy to spot
bottlenecks [36]. We start by looking into which tensor operators
are responsible for the majority of the execution time. Figures 6a
and 6b show the breakdown for a few selected queries on CPU
and GPU, respectively. Interestingly, even if TQP uses the same
algorithms on both CPU and GPU, the same query can show
different operator contributions. For example, for Q1 on CPU, most
of the time is spent on computing the unique elements, while on
GPU, most is spent on scatter_add. This is because the quality of
the operator implementations is different for CPU and GPU. Across
queries, on CPU and GPU, the majority of time is also spent on
different operators. On CPU, most queries are bounded by unique
operators,masked_select, and indexing; on GPU, most of the time is
spent on sorting, unique and nonzero. These observations suggest
that: (1) the quality of kernels differs between CPU and GPU, e.g.,
after further investigation, we find that the GPU implementation
of scatter_add is not optimal, and nonzero requires host/device
synchronization [27] (however, we believe that over time the
community will fix such performance issues); and (2) it might be
worth investigating backend-aware tensor algorithms.

Finally, we report the GPU utilization for the same set of queries
in Figure 7. As we can see, each query has different utilization
characteristics. For instance, Q1 contains complex aggregation, and
it spends 87% of the time on kernel execution; conversely, Q6 and
Q14 are simple queries, and most of the time is spent allocating
GPU memory. Finally, Q2 spends a considerable amount of time in
generating the output on CPU.
7OOM errors occurred when TQP ran Q21 at scale factor 10 on these GPUs.

9

(a) Query time breakdown for tensor operators on CPU (b) Query time breakdown for tensor operators on GPU

Figure 6: Query time breakdown for tensor operators for selected TPC-H queries at scale factor 10.

Figure 7: GPU utilization breakdown for selected TPC-

H queries at scale factor 10. Utilization varies by query.

Runtime is the time spent in scheduling the kernels.

6.6 Hand-Optimized Plans

Next, we study whether TQP’s performance can be improved with
a better optimizer able to generate better tensor programs. To
understand this, we hand-optimize the tensor programs for a few
selected queries similarly to what a reasonable optimizer with
knowledge about cardinalities and tensor characteristics would
do, e.g., avoid sorting (or computing unique) over already sorted
(or unique) columns, and select better join implementations. The
results are shown in Table 3, where we report the best baseline for
each setting (CPU 1 and 6 cores, and GPU), and over three execution
modes: interpreted PyTorch (Torch), compiled TorchScript (JIT),
and compiled using TVM. TVM only supports Q6 and Q14.

If we focus on the CPU numbers first, TQP’s performance is
comparable to or even better than that of DuckDB’s, while TQPwas
much slower compared to DuckDB both on single- and multi-core
execution when not using the hand-optimized plans. TQP is now
faster than DuckDB for all queries over 1 CPU core, and two queries
over 6 CPU cores. For some queries, TQP is faster than DuckDB by a
large margin, e.g., for Q6, 1-core TVM execution is 6× faster. This is
because TVM uses code generation and operator fusion to minimize
intermediate data materialization across operators. When scaling to
6 cores, TQP scales well only for Q14, while DuckDB scales linearly.
For the other queries, TQP’s query times improve by at most 2×.
This again shows the limitations of PyTorch’s scalability on CPU,
which cannot be improved by using better tensor programs.

Finally, on GPU, we see that OmnisciDB has still better
performance for Q9, although TQP’s query time for Q9 on GPU
improves by 4×, when using the hand-optimized plans. This is
because TQP’s aggregate implementation heavily uses sorting,
while OmnisciDB uses hash-based implementations.

6.7 Prediction Queries

We now investigate the performance benefits of using a unified
runtime for queries mixing relational and ML operators. We use
prediction queries as a use case, i.e., queries embedding a trained
ML model performing predictions over some input data [94]. Recall
that TQP natively supports predictions of any PyTorch model
(e.g., NNs), and traditional ML models through its integration
with Hummingbird. Here, we join the customer and orders
tables in TPC-H (scale factor 10), and train a gradient boosting
tree model (with 128 trees with max depths of 8) over a mix of
categorical (c_orderstatus) and numerical features (c_custkey,
c_nationkey, c_acctbal, sum(o_totalprice)) after we apply
one-hot encoding and feature scaling, respectively. We run a
prediction query using the trained model over the query with
two filter predicates added (c_mktsegment = ‘building’ and
o_orderdate >= date ‘1993-10-01’). Note that this prediction
query mixes ML operators (tree ensemble, one-hot encoding,
scaling, and concatenation) with relational ones (join, aggregation
and filtering). We compare TQP with two baselines: one where
the prediction query is executed over Spark (MLlib [90] is used to
build the model), and one where we use DuckDB for the relational
part and scikit-learn [106] for the ML part8. Since TQP subsumes
Hummingbird, it is able to compile both the ML and the relational
operators of the query into a unified plan executable on TCRs.
Figure 8 shows the result. For CPU single core, TQP is about 40%
faster than Spark, while DuckDB+scikit-learn is about 7× faster
than TQP. When enabling all cores, Spark and DuckDB scale much
better than TQP, for the reasons described in §6.3. Finally, TQP
is able to exploit GPU acceleration end-to-end, which brings a 9×
improvement of query time compared to the best CPU baseline.

6.8 Overheads

Next, we evaluate the overheads of TQP for both CPU and GPU.
The breakdown of the end-to-end execution with all overheads is
shown in Figure 9. Note that: (1) data conversion is done once and
many databases (e.g., BlazingSQL, OmnisciDB, Spark, SQL Server,
etc.) requires it; (2) TQP pipelines data movement (to the GPU) with
query execution (non-blocking IO), while for this experiment we
explicitly make data movement blocking; (3) the machine in this
experiment uses PCIe 3 which is 4× slower than the latest version,

8Note that moving data from DuckDB to scikit-learn is zero-copy since DuckDB can
directly return data in Pandas dataframe format [20].

10

Table 3: Query execution time (in seconds) on selected TPC-H queries (scale factor 10). TQP Hand-Opt. uses hand-optimized

tensor programs. We use Torch, JIT, and TVM to refer to execution using PyTorch (interpreted), TorchScript (compiled), and

TVM, respectively. Bold numbers highlight the best performance for the specific setup: CPU (1 core), CPU (6 cores), or GPU.

TPC-H Query
CPU (1 core) CPU (6 cores) GPU

Best Baseline
TQP Hand-Opt.

Best Baseline
TQP Hand-Opt.

Best Baseline
TQP Hand-Opt.

Torch JIT TVM Torch JIT TVM Torch JIT TVM

Q1 6.54 (DuckDB) 5.97 6.89 N/A 1.1 (DuckDB) 4.68 5.17 N/A 0.17 (OmnisciDB) 0.13 0.13 N/A
Q6 1.5 (DuckDB) 0.87 1.18 0.24 0.25 (DuckDB) 0.66 0.71 0.12 0.02 (OmnisciDB) 0.01 0.01 0.06
Q9 45.11 (DuckDB) 19.34 18.66 N/A 7.75 (DuckDB) 14.59 13.83 N/A 0.14 (OmnisciDB) 0.45 0.44 N/A
Q14 1.7 (DuckDB) 0.52 0.49 0.47 0.33 (DuckDB) 0.12 0.10 0.16 0.12 (BlazingSQL) 0.01 0.01 0.30

Figure 8: Query time on a query mixing ML prediction and

relational operators. In parenthesis shows the number of

CPU cores. The x-axis is in (symmetric) log scale.

PCIe 5; (4) query compilation can be cached, but here we report the
full query compilation time as the sum of the time for the frontend
database to generate the physical plan, and the time for TQP to
generate the final executable tensor program.

If we focus first on the CPU side (Figure 9a), compilation and data
conversion take the majority of the time only for simple queries
(e.g., Q6), while for the other queries, the majority of the time is
spent on the query execution. However, in the GPU case (Figure 9b),
except for Q2 and Q9, the majority of the time is spent on data
operations (conversion and movement) and compilation. However,
in practice, as described above, these overheads are hidden (e.g.,
data movement using pipelining) or are one-time overheads (data
conversion and query compilation). Regarding query compilation,
90% of the time is spent initializing the PyTorch models from the
Spark plans, and we are currently investigating how to speed up
this process. Finally, using TorchScript adds substantial compilation
overheads since queries are traced using input samples.

6.9 Portability

To evaluate whether TQP can run on different hardware and
software backends, we run TPC-HQuery 6 with the hand-optimized
plan on: (1) two integrated graphic cards, one from Intel, and one
from AMD; (2) two discrete GPUs from NVIDIA (K80 and V100: the
former a generation before the P100 GPU used for the experiments
in the previous sections; the latter one, one generation after); (3)
a custom ASIC used for NN training and inference (TPU); and (4)
a web browser. We use a scale factor of 1. The results are shown
in Table 4. This experiment proves the versatility of TQP. For the
integrated GPUs, we use TVM to code-generate the query using
Metal [35]. For the two discrete GPUs, we use vanilla PyTorch,
while for the TPU, we use the XLA backend for PyTorch9 [114].
Finally, we are able to run the query in the browser by exporting
9Note that PyTorch/XLA does not support all the necessary tensor operations and the
execution fallback to regular CPU for part of the query is not available.

it into the ONNX format and running it in Chrome using ONNX
Runtime (ORT) for WebAssembly (WASM) [96].
6.10 Engineering Effort

To demonstrate the minimal engineering effort required by TQP
to run queries over different hardware, we compare the lines of
code for a few relational operators (hash and sort-based joins,
aggregation) across all evaluated systems. For each relational
operator and each system, we use cloc [51] to count the lines of
source code (excluding comment and blank lines) from the files
containing the algorithmic functionality of the operator. This is
admittedly a subjective process, but we believe the numbers of
lines of code can roughly reflect the engineering effort required to
implement relational operators in each system. Table 5 shows the
results. Compared with the baselines, TQP requires significantly
lower engineering effort: up to 10× less compared to CPU
implementations, and 50× less compared to GPU ones. It is worth
noting that TQP is able to target different hardware with the same
implementation, so the engineering effort required for TQP to scale
over different hardware is constant. The other baseline systems do
not share this property. For instance, to run Spark on GPU (e.g.,
using RAPIDS [12], the same backend of BlazingSQL), we would
have to add the lines of code for the GPU implementation.

7 RELATEDWORK

Common representation for relational and ML workloads.

Since the ’90s [98], there have been many works trying to integrate
relational queries with data science and ML workloads [15, 32, 41,
42, 45, 50, 55, 64, 67, 68, 73, 74, 79, 82, 91, 93, 107, 112, 123–125,
128, 133, 141, 143]. To our knowledge, we are the first to propose
executing relational queries over TCRs. Earlier attempts tried to
run a few relational operators on the TPU using TensorFlow [65].
TQP is orthogonal to previous efforts to optimize relational and
tensor algebra (e.g., [67, 141]), and we believe TQP can leverage
them to improve its performance further. An analysis of matrix
query languages can be found in [58]. Here, we focus on TCRs’
tensor interface, which is more flexible than a linear algebra API.

SciDB [119, 132] is a database using arrays as the base
data representation. TensorDB [77] further proposes support for
tensor data and decomposition operations inside databases. SciDB,
TensorDB, and TQP suggest using a format closer to data science
and ML to represent data. However, TQP further exploits TCRs to
run both relational and ML workloads on hardware accelerators.
GPUs and hardware accelerators. Several systems have
explored running relational queries over GPUs [84, 88, 103, 104, 111,
127, 144]. We refer readers to [105] for a recent survey. However,

11

(a) End-to-end execution breakdown on CPU (b) End-to-end execution breakdown on GPU

Figure 9: End-to-end breakdown (incl. all overheads, and w/o pipelining and caching) for selected queries at scale factor 10.

Table 4: Query time (inmilliseconds) of TPC-H Query 6 (scale factor 1) using the hand-optimized plan over different hardware

and software backends. In parenthesis is the TCR used as well as the compilation stack (when applicable).

Intel UHD Graphics 630 AMD Radeon Pro 5300M NVIDIA K80 NVIDIA V100 TPU Chrome
(TVM on Metal) (TVM on Metal) (PyTorch) (PyTorch) (PyTorch on XLA) (ORT on WASM)

62 17 5 1 25 1900

Table 5: Lines of source code for implementing relational

operators, excluding blank lines and comments.

System
Relational Operator

Hash Join Sort-Based Join Aggregation

TQP (Various HW) 148 182 104 (sort-based)
Spark(CPU) 706 1439 637 (sort-based)

DuckDB (CPU) 1415 877 1466 (hash-based)
BlazingSQL (GPU) 1628 N/A 1389 (hash-based)
OmnisciDB (GPU) 10141 N/A 2416 (hash-based)

the majority of them focus mostly on microbenchmarks, while,
to our knowledge, only RateUpDB can support the full TPC-H
benchmark. TQP is able to run the TPC-H benchmark on both CPU
and GPU, thanks to TCRs’ flexibility to support different hardware
backends. TCUDB [66] suggests using the Tensor Core Unit (TCU)
of GPUs for accelerating relational operators. TCUDB requires an
expensive transformation from tables to matrices and also uses
low-level CUDA kernels, while TQP takes advantage of the high-
level tensor interface of TCRs. GPUs are the default hardware for
running neural network models. However, there has recently been
a rise in custom ASICs [4, 6, 11, 34, 72] purposely built for ML
workloads. With TQP, we propose a solution allowing us to run
relational queries on any hardware supported by TCRs, since many
ASICs [5, 10, 72] provide high-level interfaces directly through
TCRs or are targetable through tensor compilers [46, 83].
Query processing over heterogeneous hardware. Several
recent works have started to explore query execution over
heterogeneous hardware, such as CPU-GPU co-execution [44, 47,
57, 63, 108, 120, 121, 140]. Many of them rely on OpenCL [8] to
target different hardware. However, targeting a common language
(or similarly a generic compiler, e.g., MLIR [83]), requires non-trivial
engineering effort since each device requires proper tuning [108],
algorithms, and data structures (as well as abstractions/dialects
in the MLIR case). Conversely, TQP can natively run on any
hardware supported by TCRs, and uses TCRs’ tensor operation
implementations and compilation stacks. Currently, the user has to
specify which fragment of the query should run on which hardware,
but we are exploring how to automate this and enable co-execution.

A trend arises recently that suggests splitting relational operators
into smaller functions that can be easily composed and efficiently
dispatched over heterogeneous hardware [38, 80, 139]. TQP fits in
this trend, whereby tensor operations are sub-components.
Vectorized execution, query compilation, and columnar

databases.MonetDB/X100 [43] pioneered the vectorized execution
model as well as the columnar data layout [131]. TQP follows a
similar design, where data is stored in a columnar format with
virtual IDs [30], but each column is represented as a tensor. Recent
works, such as HyPer [99] and others [92, 100, 126], have focused on
query compilation. Nevertheless, since (1) there is no clear winner
between query compilation and vectorized execution [75] ; (2) many
industry-grade systems use vectorized execution because it is easier
to debug and profile [40]; and (3) compiled systems start to move
to vectorized execution (e.g., Spark with Photon), we evaluate TQP
against a state-of-the-art vectorized engine, DuckDB [117].

On the ML systems side, TensorFlow initially embraced
a compiled (graph) execution [31], while PyTorch pioneered
interpreted (eager) execution [102]. Compilers [14, 28, 46, 53, 54,
78, 83] and optimization techniques [69–71] for neural networks
are hot topics in the MLSys community. With TQP, we aim to ride
the wave of innovation in this domain. For TQP, interpreted vs.
compiled execution is just another point in the query optimization
space, since TCRs allow to switch between them seamlessly.

8 CONCLUSION

We proposed TQP, the first system able to run relational queries on
TCRs. TQP is able to take advantage of all the innovation poured
into TCRs, as well as to run efficiently on any hardware devices
supported by TCRs. Our experiments showed not only that TQP is
capable of running the full TPC-H benchmark on TCRs, but also
that TQP’s performance is comparable and often superior to that
of specialized CPU and GPU query processing systems.

ACKNOWLEDGMENTS

Wewould like to thank Yuki Asada, Victor Fu, Apurva Gandhi, Lihao
Zhang, Advitya Gemawat, Venkatesh Emani, Masahiro Masuda,
Ziheng Jiang, Raghu Ramakrishnan, and Magdalena Balazinska for
their insightful feedback and support.

12

REFERENCES

[1] 2018. TensorFlow. https://www.tensorflow.org.
[2] 2019. Tensor-RT. https://developer.nvidia.com/tensorrt.
[3] 2020. BlazingSQL. https://blazingsql.com/.
[4] 2020. Cerebras. https://cerebras.net/.
[5] 2020. Cerebras Software. https://cerebras.net/product/#software.
[6] 2020. GraphCore. https://www.graphcore.ai/.
[7] 2020. OmnisciDB. https://www.omnisci.com/.
[8] 2020. OpenCL. https://www.khronos.org/opencl/.
[9] 2020. Pytorch Ecosystem. https://pytorch.org/ecosystem/.
[10] 2020. PyTorch Release for IPU. https://medium.com/pytorch/graphcore-

announces-production-release-of-pytorch-for-ipu-f1a846de1a2f.
[11] 2020. Sambanova: Massive Models for Everyone. https://sambanova.ai/.
[12] 2020. Spark-RAPIDS. https://nvidia.github.io/spark-rapids/.
[13] 2020. TensorBoard. https://github.com/tensorflow/tensorboard
[14] 2020. Tensorflow XLA. https://www.tensorflow.org/xla.
[15] 2020. Tidypredict. https://tidypredict.netlify.com/.
[16] 2021. GPU-Accelerated String Processing with RAPIDS. https://

www.nvidia.com/en-us/on-demand/session/gtcfall20-a21131/.
[17] 2021. Introducing Pandas UDF for PySpark. https://databricks.com/blog/2017/

10/30/introducing-vectorized-udfs-for-pyspark.html.
[18] 2022. Code with Eager Execution, Run with Graphs: Optimizing Your

Code with RevNet as an Example. Retrieved February, 2022 from
https://blog.tensorflow.org/2018/08/code-with-eager-execution-run-with-
graphs.html

[19] 2022. Datasets & DataLoaders. https://pytorch.org/tutorials/beginner/basics/
data_tutorial.html.

[20] 2022. Efficient SQL on Pandas with DuckDB. https://duckdb.org/2021/05/14/sql-
on-pandas.html.

[21] 2022. Intel Extension for PyTorch. https://pytorch.org/tutorials/recipes/recipes/
intel_extension_for_pytorch.html.

[22] 2022. Introducing Accelerated PyTorch Training on Mac. https://pytorch.org/
blog/introducing-accelerated-pytorch-training-on-mac/.

[23] 2022. ONNX Runtime. https://github.com/microsoft/onnxruntime
[24] 2022. PyTorch Distributed Overview. https://pytorch.org/tutorials/beginner/

dist_overview.html.
[25] 2022. PyTorch for AMD ROCm Platform now available as Python

package. https://pytorch.org/blog/pytorch-for-amd-rocm-platform-now-
available-as-python-package/.

[26] 2022. Substrait. https://github.com/substrait-io.
[27] 2022. torch.nonzero. https://pytorch.org/docs/stable/generated/

torch.nonzero.html.
[28] 2022. TorchScript Documentation. https://pytorch.org/docs/stable/jit.html
[29] Daniel Abadi, Peter Boncz, and Stavros Harizopoulos. 2013. The Design and

Implementation of Modern Column-Oriented Database Systems. Now Publishers
Inc., Hanover, MA, USA.

[30] Daniel Abadi, Peter Boncz, Stavros Harizopoulos, Stratos Idreaos, and Samuel
Madden. 2013. The Design and Implementation of Modern Column-Oriented
Database Systems.

[31] Martin Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey
Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard,
Manjunath Kudlur, Josh Levenberg, Rajat Monga, Sherry Moore, Derek G.
Murray, Benoit Steiner, Paul Tucker, Vijay Vasudevan, Pete Warden, Martin
Wicke, Yuan Yu, and Xiaoqiang Zheng. 2016. TensorFlow: A system for large-
scale machine learning. In 12th USENIX Symposium on Operating Systems Design
and Implementation. 265–283.

[32] Amazon.com. 2021. Redshift ML. https://aws.amazon.com/blogs/big-
data/create-train-and-deploy-machine-learning-models-in-amazon-
redshift.-using-sql-with-amazon-redshift-ml

[33] AMD. 2022. ROCm. Retrieved January, 2022 from https://rocmdocs.amd.com/
en/latest/

[34] Apple. 2022. Apple Neural Engine. Retrieved January, 2022 from https://
en.wikipedia.org/wiki/Apple_A11#Neural_Engine

[35] Apple. 2022. Metal. Retrieved January, 2022 from https://developer.apple.com/
metal/

[36] Yuki Asada, Victor Fu, Apurva Gandhi, Advitya Gemawat, Lihao Zhang, Dong
He, Vivek Gupta, Ehi Nosakhare, Dalitso Banda, Rathijit Sen, and Matteo
Interlandi. 2022. Share the Tensor Tea: HowDatabases can Leverage theMachine
Learning Ecosystem. Proc. VLDB Endow. 15, 12 (2022).

[37] AWS. 2022. Inferentia. Retrieved January, 2022 from https://aws.amazon.com/
machine-learning/inferentia/

[38] Maximilian Bandle and Jana Giceva. 2021. Database Technology for the Masses:
Sub-Operators as First-Class Entities. Proc. VLDB Endow. 14, 11 (2021), 2483–
2490.

[39] Edmon Begoli, Jesús Camacho-Rodríguez, Julian Hyde, Michael J. Mior, and
Daniel Lemire. 2018. Apache Calcite: A Foundational Framework for Optimized
Query Processing Over Heterogeneous Data Sources. In Proceedings of the 2018
ACM SIGMOD International Conference on Management of Data. ACM, New

York, NY, USA, 221–230.
[40] Alexander Behm. 2022. Photon: A High-Performance Query Engine for the

Lakehouse. In CIDR. www.cidrdb.org. http://cidrdb.org/cidr2022/papers/a100-
behm.pdf

[41] Matthias Boehm, Iulian Antonov, Mark Dokter, Robert Ginthör, Kevin
Innerebner, Florijan Klezin, Stefanie N. Lindstaedt, Arnab Phani, and Benjamin
Rath. 2019. SystemDS: A Declarative Machine Learning System for the End-to-
End Data Science Lifecycle. CoRR abs/1909.02976 (2019).

[42] Matthias Boehm, Michael W. Dusenberry, Deron Eriksson, Alexandre V.
Evfimievski, Faraz Makari Manshadi, Niketan Pansare, Berthold Reinwald,
Frederick R. Reiss, Prithviraj Sen, Arvind C. Surve, and Shirish Tatikonda. 2016.
SystemML: Declarative Machine Learning on Spark. Proc. VLDB Endow. 9, 13
(sep 2016), 1425–1436.

[43] Peter A. Boncz, Marcin Zukowski, and Niels Nes. 2005. MonetDB/X100:
Hyper-Pipelining Query Execution.. In CIDR. www.cidrdb.org, 225–237. http:
//dblp.uni-trier.de/db/conf/cidr/cidr2005.html#BonczZN05

[44] Sebastian Breβ, Bastian Köcher, Henning Funke, Steffen Zeuch, Tilmann Rabl,
and Volker Markl. 2018. Generating Custom Code for Efficient Query Execution
on Heterogeneous Processors. The VLDB Journal 27, 6 (2018), 797–822.

[45] Francesco Del Buono, Matteo Paganelli, Paolo Sottovia, Matteo Interlandi, and
Francesco Guerra. 2021. Transforming ML Predictive Pipelines into SQL with
MASQ. In SIGMOD ’21: International Conference on Management of Data, Virtual
Event, China, June 20-25, 2021. ACM, 2696–2700.

[46] Tianqi Chen, Thierry Moreau, Ziheng Jiang, Lianmin Zheng, Eddie Yan, Meghan
Cowan, Haichen Shen, Leyuan Wang, Yuwei Hu, Luis Ceze, Carlos Guestrin,
and Arvind Krishnamurthy. 2018. TVM: An Automated End-to-end Optimizing
Compiler for Deep Learning. In Proceedings of the 12th USENIX Conference on
Operating Systems Design and Implementation. USENIX Association, Berkeley,
CA, USA, 579–594.

[47] Periklis Chrysogelos, Manos Karpathiotakis, Raja Appuswamy, and Anastasia
Ailamaki. 2019. HetExchange: Encapsulating Heterogeneous CPU-GPU
Parallelism in JIT Compiled Engines. Proc. VLDB Endow. 12, 5 (2019), 544–556.

[48] Eric Chung, Jeremy Fowers, Kalin Ovtcharov, Michael Papamichael, Adrian
Caulfield, Todd Massengill, Ming Liu, Mahdi Ghandi, Daniel Lo, Steve Reinhardt,
Shlomi Alkalay, Hari Angepat, Derek Chiou, Alessandro Forin, Doug Burger,
Lisa Woods, Gabriel Weisz, Michael Haselman, and Dan Zhang. 2018. Serving
DNNs in Real Time at Datacenter Scale with Project Brainwave. IEEE Micro 38
(2018), 8–20.

[49] Transaction Processing Performance Council. 2018. TPC Benchmark H.
Retrieved January, 2022 from http://tpc.org/tpc_documents_current_versions/
pdf/tpc-h_v2.18.0.pdf

[50] Patrick Damme, Marius Birkenbach, Constatinos Bitsakos, Matthias Boehm,
Philippe Bonnet, Florina Ciorba, Mark Dokter, Pawel Dowgiallo, Ahmed
Eleliemy, Christian Faerber, Georgios Goumas, Dirk Habich, Niclas Hedam,
Marlies Hofer, Wenjun Huang, Kevin Innerebner, Vasileios Karakostas, Roman
Kern, Tomaž Kosar, Alexander Krause, Daniel Krems, Andreas Laber, Wolfgang
Lehner, Eric Mier, Tilmann Rabl, Piotr Ratuszniak, Pedro Silva, Nikolai Skuppin,
Andreas Starzacher, Benjamin Steinwender, Ilin Tolovski, Pinar Tözün, Wojciech
Ulatowski, Yuanyuan Wang, Izajasz Wrosz, Aleš Zamuda, Ce Zhang, and Xiao
Xiang Zhu. 2022. DAPHNE: An Open and Extensible System Infrastructure for
Integrated Data Analysis Pipelines. In 12th Annual Conference on Innovative
Data Systems Research (CIDR ’22).

[51] Albert Danial. 2021. cloc: v1.92. https://doi.org/10.5281/zenodo.5760077
[52] Zachary DeVito. 2019. TorchScript: Optimized Execution of PyTorch Programs.

Retrieved January, 2022 from https://program-transformations.github.io/slides/
pytorch_neurips.pdf

[53] Pratik Fegade, Tianqi Chen, Phillip Gibbons, and Todd Mowry. 2021. Cortex:
A Compiler for Recursive Deep Learning Models. In Proceedings of Machine
Learning and Systems, Vol. 3. 38–54.

[54] Pratik Fegade, Tianqi Chen, Phillip B. Gibbons, and Todd C. Mowry. 2021. The
CoRa Tensor Compiler: Compilation for Ragged Tensors with Minimal Padding.
CoRR abs/2110.10221 (2021).

[55] Xixuan Feng, Arun Kumar, Benjamin Recht, and Christopher Ré. 2012. Towards
a Unified Architecture for In-RDBMS Analytics. In Proceedings of the 2012 ACM
SIGMOD International Conference on Management of Data. ACM, New York, NY,
USA, 325–336.

[56] .NET Foundation. 2020. TorchSharp - PyTorch .NET bindings. Retrieved February,
2022 from https://github.com/dotnet/TorchSharp

[57] Henning Funke, Sebastian Breß, Stefan Noll, Volker Markl, and Jens Teubner.
2018. Pipelined Query Processing in Coprocessor Environments. In Proceedings
of the 2018 International Conference on Management of Data. ACM, New York,
NY, USA, 1603–1618.

[58] Floris Geerts, Thomas Muñoz, Cristian Riveros, Jan Van den Bussche, and
Domagoj Vrgoč. 2021. Matrix Query Languages. SIGMOD Rec. 50, 3 (2021),
6–19.

[59] A. Gholami, Z. Yao, S. Kim, M.W. Mahoney, and K. Keutzer. 2021. AI and memory
wall. Berkeley. Retrieved January, 2022 from https://medium.com/riselab/ai-
and-memory-wall-2cb4265cb0b8

13

https://www.tensorflow.org
https://developer.nvidia.com/tensorrt
https://blazingsql.com/
https://cerebras.net/
https://cerebras.net/product/#software
https://www.graphcore.ai/
https://www.omnisci.com/
https://pytorch.org/ecosystem/
https://medium.com/pytorch/graphcore-announces-production-release-of-pytorch-for-ipu-f1a846de1a2f
https://medium.com/pytorch/graphcore-announces-production-release-of-pytorch-for-ipu-f1a846de1a2f
https://sambanova.ai/
https://nvidia.github.io/spark-rapids/
https://github.com/tensorflow/tensorboard
https://www.tensorflow.org/xla
https://tidypredict.netlify.com/
https://www.nvidia.com/en-us/on-demand/session/gtcfall20-a21131/
https://www.nvidia.com/en-us/on-demand/session/gtcfall20-a21131/
https://databricks.com/blog/2017/10/30/introducing-vectorized-udfs-for-pyspark.html
https://databricks.com/blog/2017/10/30/introducing-vectorized-udfs-for-pyspark.html
https://blog.tensorflow.org/2018/08/code-with-eager-execution-run-with-graphs.html
https://blog.tensorflow.org/2018/08/code-with-eager-execution-run-with-graphs.html
https://pytorch.org/tutorials/beginner/basics/data_tutorial.html
https://pytorch.org/tutorials/beginner/basics/data_tutorial.html
https://duckdb.org/2021/05/14/sql-on-pandas.html
https://duckdb.org/2021/05/14/sql-on-pandas.html
https://pytorch.org/tutorials/recipes/recipes/intel_extension_for_pytorch.html
https://pytorch.org/tutorials/recipes/recipes/intel_extension_for_pytorch.html
https://pytorch.org/blog/introducing-accelerated-pytorch-training-on-mac/
https://pytorch.org/blog/introducing-accelerated-pytorch-training-on-mac/
https://github.com/microsoft/onnxruntime
https://pytorch.org/tutorials/beginner/dist_overview.html
https://pytorch.org/tutorials/beginner/dist_overview.html
https://pytorch.org/blog/pytorch-for-amd-rocm-platform-now-available-as-python-package/
https://pytorch.org/blog/pytorch-for-amd-rocm-platform-now-available-as-python-package/
https://github.com/substrait-io
https://pytorch.org/docs/stable/generated/torch.nonzero.html
https://pytorch.org/docs/stable/generated/torch.nonzero.html
https://pytorch.org/docs/stable/jit.html
https://aws.amazon.com/blogs/big-data/create-train-and-deploy-machine-learning-models-in-amazon-redshift. -using-sql-with-amazon-redshift-ml
https://aws.amazon.com/blogs/big-data/create-train-and-deploy-machine-learning-models-in-amazon-redshift. -using-sql-with-amazon-redshift-ml
https://aws.amazon.com/blogs/big-data/create-train-and-deploy-machine-learning-models-in-amazon-redshift. -using-sql-with-amazon-redshift-ml
https://rocmdocs.amd.com/en/latest/
https://rocmdocs.amd.com/en/latest/
https://en.wikipedia.org/wiki/Apple_A11#Neural_Engine
https://en.wikipedia.org/wiki/Apple_A11#Neural_Engine
https://developer.apple.com/metal/
https://developer.apple.com/metal/
https://aws.amazon.com/machine-learning/inferentia/
https://aws.amazon.com/machine-learning/inferentia/
http://cidrdb.org/cidr2022/papers/a100-behm.pdf
http://cidrdb.org/cidr2022/papers/a100-behm.pdf
http://dblp.uni-trier.de/db/conf/cidr/cidr2005.html#BonczZN05
http://dblp.uni-trier.de/db/conf/cidr/cidr2005.html#BonczZN05
http://tpc.org/tpc_documents_current_versions/pdf/tpc-h_v2.18.0.pdf
http://tpc.org/tpc_documents_current_versions/pdf/tpc-h_v2.18.0.pdf
https://doi.org/10.5281/zenodo.5760077
https://program-transformations.github.io/slides/pytorch_neurips.pdf
https://program-transformations.github.io/slides/pytorch_neurips.pdf
https://github.com/dotnet/TorchSharp
https://medium.com/riselab/ai-and-memory-wall-2cb4265cb0b8
https://medium.com/riselab/ai-and-memory-wall-2cb4265cb0b8

[60] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. 2016. Deep learning. MIT
press.

[61] Google. 2021. Improved On-Device ML on Pixel 6, with Neural Architecture Search.
Retrieved January, 2021 from https://ai.googleblog.com/2021/11/improved-on-
device-ml-on-pixel-6-with.html

[62] Habana. 2022. Habana. Retrieved January, 2022 from https://habana.ai/
[63] Max Heimel, Michael Saecker, Holger Pirk, Stefan Manegold, and Volker Markl.

2013. Hardware-Oblivious Parallelism for in-Memory Column-Stores. Proc.
VLDB Endow. 6, 9 (2013), 709–720.

[64] Joseph M. Hellerstein, Christoper Ré, Florian Schoppmann, Daisy Zhe Wang,
Eugene Fratkin, Aleksander Gorajek, Kee Siong Ng, Caleb Welton, Xixuan Feng,
Kun Li, and et al. 2012. The MADlib Analytics Library: Or MAD Skills, the SQL.
Proc. VLDB Endow. 5, 12 (2012), 1700–1711.

[65] Pedro Holanda and Hannes Mühleisen. 2019. Relational Queries with a Tensor
Processing Unit. In Proceedings of the 15th International Workshop on Data
Management on New Hardware. ACM, New York, NY, USA, Article 19, 3 pages.

[66] Yu-Ching Hu, Yuliang Li, and Hung-Wei Tseng. 2021. TCUDB: Accelerating
Database with Tensor Processors. CoRR abs/2112.07552 (2021).

[67] Dylan Hutchison, Bill Howe, and Dan Suciu. 2017. LaraDB. Proceedings of the
4th Algorithms and Systems on MapReduce and Beyond - BeyondMR’17 (2017).

[68] Dimitrije Jankov, Shangyu Luo, Binhang Yuan, Zhuhua Cai, Jia Zou, Chris
Jermaine, and Zekai J. Gao. 2019. Declarative Recursive Computation on an
RDBMS: Or, Why You Should Use a Database for Distributed Machine Learning.
Proc. VLDB Endow. 12, 7 (2019), 822–835.

[69] Eunji Jeong, Sungwoo Cho, Gyeong-In Yu, Joo Seong Jeong, Dongjin Shin,
and Byung-Gon Chun. 2019. JANUS: Fast and Flexible Deep Learning via
Symbolic Graph Execution of Imperative Programs. In 16th USENIX Symposium
on Networked Systems Design and Implementation, NSDI 2019, Boston, MA,
February 26-28, 2019. USENIX Association, 453–468. https://www.usenix.org/
conference/nsdi19/presentation/jeong

[70] Zhihao Jia, Oded Padon, James Thomas, Todd Warszawski, Matei Zaharia,
and Alex Aiken. 2019. TASO: Optimizing Deep Learning Computation with
Automatic Generation of Graph Substitutions. In Proceedings of the 27th ACM
Symposium on Operating Systems Principles. ACM, New York, NY, USA, 47–62.

[71] Zhihao Jia, James Thomas, Todd Warszawski, Mingyu Gao, Matei Zaharia,
and Alex Aiken. 2019. Optimizing DNN Computation with Relaxed Graph
Substitutions. In Proceedings of Machine Learning and Systems, Vol. 1. 27–39.

[72] Norman P. Jouppi, Cliff Young, Nishant Patil, David A. Patterson, Gaurav
Agrawal, Raminder Bajwa, Sarah Bates, Suresh Bhatia, Nan Boden, Al Borchers,
Rick Boyle, Pierre-luc Cantin, Clifford Chao, Chris Clark, Jeremy Coriell, Mike
Daley, Matt Dau, Jeffrey Dean, Ben Gelb, Tara Vazir Ghaemmaghami, Rajendra
Gottipati, William Gulland, Robert Hagmann, Richard C. Ho, Doug Hogberg,
John Hu, Robert Hundt, Dan Hurt, Julian Ibarz, Aaron Jaffey, Alek Jaworski,
Alexander Kaplan, Harshit Khaitan, Andy Koch, Naveen Kumar, Steve Lacy,
James Laudon, James Law, Diemthu Le, Chris Leary, Zhuyuan Liu, Kyle Lucke,
Alan Lundin, Gordon MacKean, Adriana Maggiore, Maire Mahony, Kieran
Miller, Rahul Nagarajan, Ravi Narayanaswami, Ray Ni, Kathy Nix, Thomas
Norrie, Mark Omernick, Narayana Penukonda, Andy Phelps, Jonathan Ross,
Amir Salek, Emad Samadiani, Chris Severn, Gregory Sizikov, Matthew Snelham,
Jed Souter, Dan Steinberg, Andy Swing, Mercedes Tan, Gregory Thorson, Bo
Tian, Horia Toma, Erick Tuttle, Vijay Vasudevan, Richard Walter, Walter Wang,
Eric Wilcox, and Doe Hyun Yoon. 2017. In-Datacenter Performance Analysis of
a Tensor Processing Unit. CoRR abs/1704.04760 (2017).

[73] Konstantinos Karanasos, Matteo Interlandi, Fotis Psallidas, Rathijit Sen,
Kwanghyun Park, Ivan Popivanov, Doris Xin, Supun Nakandala, Subru Krishnan,
Markus Weimer, Yuan Yu, Raghu Ramakrishnan, and Carlo Curino. 2020.
Extending Relational Query Processing with ML Inference. In CIDR 2020, 10th
Conference on Innovative Data Systems Research, Amsterdam, The Netherlands,
January 12-15, 2020, Online Proceedings. www.cidrdb.org. http://cidrdb.org/
cidr2020/papers/p24-karanasos-cidr20.pdf

[74] David Kernert, Frank Köhler, and Wolfgang Lehner. 2014. SLACID - Sparse
Linear Algebra in a Column-Oriented in-Memory Database System. In
Proceedings of the 26th International Conference on Scientific and Statistical
Database Management. ACM, New York, NY, USA, Article 11, 12 pages.

[75] Timo Kersten, Viktor Leis, Alfons Kemper, Thomas Neumann, Andrew Pavlo,
and Peter A. Boncz. 2018. Everything You Always Wanted to Know About
Compiled and Vectorized Queries But Were Afraid to Ask. Proc. VLDB Endow.
11, 13 (2018), 2209–2222. https://doi.org/10.14778/3275366.3275370

[76] Changkyu Kim, Tim Kaldewey, Victor W. Lee, Eric Sedlar, Anthony D. Nguyen,
Nadathur Satish, Jatin Chhugani, Andrea Di Blas, and Pradeep Dubey. 2009.
Sort vs. Hash Revisited: Fast Join Implementation on Modern Multi-Core CPUs.
Proc. VLDB Endow. 2, 2 (2009), 1378–1389.

[77] Mijung Kim and K. Selçuk Candan. 2014. TensorDB: In-Database Tensor
Manipulation with Tensor-Relational Query Plans. In Proceedings of the 23rd
ACM International Conference on Conference on Information and Knowledge
Management. ACM, New York, NY, USA, 2039–2041.

[78] Fredrik Kjolstad, Shoaib Kamil, Stephen Chou, David Lugato, and Saman
Amarasinghe. 2017. The Tensor Algebra Compiler. Proc. ACM Program. Lang. 1,

Article 77 (2017), 29 pages.
[79] Vladimir Kotlyar, Keshav Pingali, and Paul Stodghill. 1997. A Relational Approach

to the Compilation of Sparse Matrix Programs. Technical Report. USA.
[80] Dimitrios Koutsoukos, Ingo Müller, Renato Marroquín, Ana Klimovic, and

Gustavo Alonso. 2021. Modularis: Modular Relational Analytics over
Heterogeneous Distributed Platforms. VLDB 14, 13 (2021), 3308–3321.

[81] Dimitrios Koutsoukos, Supun Nakandala, Konstantinos Karanasos, Karla Saur,
Gustavo Alonso, and Matteo Interlandi. 2021. Tensors: An abstraction for
general data processing. Proc. VLDB Endow. 14, 10 (2021), 1797–1804.

[82] Arun Kumar, Matthias Boehm, and Jun Yang. 2017. Data Management in
Machine Learning: Challenges, Techniques, and Systems. In Proceedings of the
2017 ACM International Conference on Management of Data. ACM, New York,
NY, USA, 1717–1722.

[83] Chris Lattner, Jacques Pienaar, Mehdi Amini, Uday Bondhugula, River Riddle,
Albert Cohen, Tatiana Shpeisman, Andy Davis, Nicolas Vasilache, and Oleksandr
Zinenko. 2020. MLIR: A Compiler Infrastructure for the End of Moore’s Law.
(2020). arXiv:2002.11054

[84] Rubao Lee, Minghong Zhou, Chi Li, Shenggang Hu, Jianping Teng, Dongyang
Li, and Xiaodong Zhang. 2021. The Art of Balance: A RateupDB™ Experience
of Building a CPU/GPU Hybrid Database Product. Proc. VLDB Endow. 14, 12
(2021), 2999–3013.

[85] Viktor Leis, Peter Boncz, Alfons Kemper, and Thomas Neumann. 2014. Morsel-
Driven Parallelism: A NUMA-Aware Query Evaluation Framework for the
Many-Core Age. ACM, New York, NY, USA, 743–754. https://doi.org/10.1145/
2588555.2610507

[86] Shen Li, Yanli Zhao, Rohan Varma, Omkar Salpekar, Pieter Noordhuis, Teng
Li, Adam Paszke, Jeff Smith, Brian Vaughan, Pritam Damania, and Soumith
Chintala. 2020. PyTorch Distributed: Experiences on Accelerating Data Parallel
Training. Proc. VLDB Endow. 13, 12 (2020).

[87] Zhe Li and Kenneth A. Ross. 1999. Fast Joins Using Join Indices. The VLDB
Journal 8, 1 (apr 1999), 1–24. https://doi.org/10.1007/s007780050071

[88] Clemens Lutz, Sebastian Breß, Steffen Zeuch, Tilmann Rabl, and Volker Markl.
2020. Pump Up the Volume: Processing Large Data on GPUs with Fast Interconnects.
ACM, New York, NY, USA, 1633–1649.

[89] Laurent Mazare. 2020. PyTorch Rust bindings. Retrieved February, 2022 from
https://github.com/LaurentMazare/tch-rs

[90] Xiangrui Meng, Joseph Bradley, Burak Yavuz, Evan Sparks, Shivaram
Venkataraman, Davies Liu, Jeremy Freeman, DB Tsai, Manish Amde, Sean
Owen, Doris Xin, Reynold Xin, Michael J. Franklin, Reza Zadeh, Matei Zaharia,
and Ameet Talwalkar. 2016. MLlib: Machine Learning in Apache Spark. Journal
of Machine Learning Research 17, 34 (2016), 1–7.

[91] Xiangrui Meng, Joseph Bradley, Burak Yavuz, Evan Sparks, Shivaram
Venkataraman, Davies Liu, Jeremy Freeman, DB Tsai, Manish Amde, Sean
Owen, Doris Xin, Reynold Xin, Michael J. Franklin, Reza Zadeh, Matei Zaharia,
and Ameet Talwalkar. 2016. MLlib: Machine Learning in Apache Spark. J. Mach.
Learn. Res. 17, 1 (2016), 1235–1241.

[92] Prashanth Menon, Todd C. Mowry, and Andrew Pavlo. 2017. Relaxed Operator
Fusion for In-Memory Databases: Making Compilation, Vectorization, and
Prefetching Work Together at Last. Proc. VLDB Endow. 11, 1 (2017), 1–13.

[93] Microsoft. 2021. PREDICT in T-SQL. https://docs.microsoft.com/en-us/sql/t-
sql/queries/predict-transact-sql?view=sql-server-ver15

[94] Microsoft. 2021. Tutorial: Score machine learning models with PREDICT
in serverless Apache Spark pools. Retrieved January, 2022 from
https://docs.microsoft.com/en-us/azure/synapse-analytics/machine-
learning/tutorial-score-model-predict-spark-pool

[95] Microsoft. 2022. Hummingbird. Retrieved January, 2022 from https://
github.com/microsoft/hummingbird

[96] Microsoft. 2022. ONNX Runtime Web—running your machine learning model
in browser. Retrieved January, 2022 from https://cloudblogs.microsoft.com/
opensource/2021/09/02/onnx-runtime-web-running-your-machine-learning-
model-in-browser/

[97] Supun Nakandala, Karla Saur, Gyeong-In Yu, Konstantinos Karanasos, Carlo
Curino, Markus Weimer, and Matteo Interlandi. 2020. A Tensor Compiler for
Unified Machine Learning Prediction Serving. In 14th USENIX Symposium on
Operating Systems Design and Implementation (OSDI 20). USENIX Association,
899–917. https://www.usenix.org/conference/osdi20/presentation/nakandala

[98] Amir Netz, Jeff Bernhardt, Usama Fayyad, and Surajit Chaudhuri. 2000.
Integration of Data Mining and Relational Databases. In Proceedings of the
26th International Conference on Very Large Databases. VLDB Endowment.

[99] Thomas Neumann. 2011. Efficiently Compiling Efficient Query Plans for Modern
Hardware. Proc. VLDB Endow. 4, 9 (2011), 539–550.

[100] Thomas Neumann and Michael J. Freitag. 2020. Umbra: A Disk-Based System
with In-Memory Performance. In 10th Conference on Innovative Data Systems
Research, CIDR 2020, Amsterdam, The Netherlands, January 12-15, 2020, Online
Proceedings. www.cidrdb.org. http://cidrdb.org/cidr2020/papers/p29-neumann-
cidr20.pdf

[101] Amadou Ngom, Prashanth Menon, Matthew Butrovich, Lin Ma, Wan Shen Lim,
Todd C. Mowry, and Andrew Pavlo. 2021. Filter Representation in Vectorized

14

https://ai.googleblog.com/2021/11/improved-on-device-ml-on-pixel-6-with.html
https://ai.googleblog.com/2021/11/improved-on-device-ml-on-pixel-6-with.html
https://habana.ai/
https://www.usenix.org/conference/nsdi19/presentation/jeong
https://www.usenix.org/conference/nsdi19/presentation/jeong
http://cidrdb.org/cidr2020/papers/p24-karanasos-cidr20.pdf
http://cidrdb.org/cidr2020/papers/p24-karanasos-cidr20.pdf
https://doi.org/10.14778/3275366.3275370
https://arxiv.org/abs/2002.11054
https://doi.org/10.1145/2588555.2610507
https://doi.org/10.1145/2588555.2610507
https://doi.org/10.1007/s007780050071
https://github.com/LaurentMazare/tch-rs
https://docs.microsoft.com/en-us/sql/t-sql/queries/predict-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/queries/predict-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/azure/synapse-analytics/machine-learning/tutorial-score-model-predict-spark-pool
https://docs.microsoft.com/en-us/azure/synapse-analytics/machine-learning/tutorial-score-model-predict-spark-pool
https://github.com/microsoft/hummingbird
https://github.com/microsoft/hummingbird
https://cloudblogs.microsoft.com/opensource/2021/09/02/onnx-runtime-web-running-your-machine-learning-model-in-browser/
https://cloudblogs.microsoft.com/opensource/2021/09/02/onnx-runtime-web-running-your-machine-learning-model-in-browser/
https://cloudblogs.microsoft.com/opensource/2021/09/02/onnx-runtime-web-running-your-machine-learning-model-in-browser/
https://www.usenix.org/conference/osdi20/presentation/nakandala
http://cidrdb.org/cidr2020/papers/p29-neumann-cidr20.pdf
http://cidrdb.org/cidr2020/papers/p29-neumann-cidr20.pdf

Query Execution. ACM, New York, NY, USA.
[102] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang,

Zachary DeVito, Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer.
2017. Automatic differentiation in PyTorch. In NIPS-W.

[103] Johns Paul, Bingsheng He, Shengliang Lu, and Chiew Tong Lau. 2020. Improving
Execution Efficiency of Just-in-Time Compilation Based Query Processing on
GPUs. Proc. VLDB Endow. 14, 2 (2020), 202–214.

[104] Johns Paul, Jiong He, and Bingsheng He. 2016. GPL: A GPU-Based Pipelined
Query Processing Engine. In Proceedings of the 2016 International Conference on
Management of Data. ACM, New York, NY, USA, 1935–1950.

[105] Johns Paul, Shengliang Lu, and Bingsheng He. 2021. Database Systems on GPUs.
Foundations and Trends® in Databases 11, 1 (2021), 1–108.

[106] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel,
Bertrand Thirion, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron
Weiss, Vincent Dubourg, Jake Vanderplas, Alexandre Passos, David Cournapeau,
Matthieu Brucher, Matthieu Perrot, and Édouard Duchesnay. 2011. Scikit-learn:
Machine Learning in Python. J. Mach. Learn. Res. 12 (2011), 2825–2830.

[107] Devin Petersohn, Stephen Macke, Doris Xin, William Ma, Doris Lee, Xiangxi
Mo, Joseph E. Gonzalez, Joseph M. Hellerstein, Anthony D. Joseph, and Aditya
Parameswaran. 2020. Towards Scalable Dataframe Systems. Proc. VLDB Endow.
13, 12 (2020), 2033–2046.

[108] Holger Pirk, Oscar Moll, Matei Zaharia, and Sam Madden. 2016. Voodoo - a
Vector Algebra for Portable Database Performance on Modern Hardware. Proc.
VLDB Endow. 9, 14 (2016), 1707–1718.

[109] Orestis Polychroniou, Arun Raghavan, and Kenneth A. Ross. 2015. Rethinking
SIMD Vectorization for In-Memory Databases. In Proceedings of the 2015 ACM
SIGMOD International Conference on Management of Data. ACM, New York, NY,
USA, 1493–1508.

[110] Orestis Polychroniou and Kenneth A. Ross. 2019. Towards Practical Vectorized
Analytical Query Engines. In Proceedings of the 15th International Workshop
on Data Management on New Hardware. ACM, New York, NY, USA, Article 10,
7 pages.

[111] Jason Power, Yinan Li, Mark D. Hill, Jignesh M. Patel, and David A. Wood. 2015.
Toward GPUs Being Mainstream in Analytic Processing: An Initial Argument
Using Simple Scan-Aggregate Queries. In Proceedings of the 11th International
Workshop on Data Management on New Hardware. ACM, New York, NY, USA,
Article 11, 8 pages.

[112] Shreya Prasad, Arash Fard, Vishrut Gupta, Jorge Martinez, Jeff LeFevre, Vincent
Xu, Meichun Hsu, and Indrajit Roy. 2015. Large-Scale Predictive Analytics
in Vertica: Fast Data Transfer, Distributed Model Creation, and In-Database
Prediction. In Proceedings of the 2015 ACM SIGMOD International Conference on
Management of Data. ACM, New York, NY, USA, 1657–1668.

[113] PyTorch. 2020. PyTorch Java bindings. Retrieved February, 2022 from https:
//github.com/pytorch/java-demo

[114] PyTorch. 2022. PyTorch on XLA Devices. Retrieved January, 2022 from https:
//pytorch.org/xla/release/1.9/index.html

[115] PyTorch. 2022. Torch.Tensor Documentation. Retrieved January, 2022 from
https://pytorch.org/docs/stable/tensors.html

[116] PyTorch. 2022. Unique.cpp. Retrieved January, 2022 from https://github.com/
pytorch/pytorch/blob/7ee0712642492ef221a69d3fdf13b607f406bd78/aten/src/
ATen/native/Unique.cpp

[117] Mark Raasveldt and Hannes Mühleisen. 2020. Data Management for Data
Science - Towards Embedded Analytics. In 10th Conference on Innovative Data
Systems Research, CIDR 2020, Amsterdam, The Netherlands, January 12-15, 2020,
Online Proceedings. www.cidrdb.org. http://cidrdb.org/cidr2020/papers/p23-
raasveldt-cidr20.pdf

[118] Vijayshankar Raman, Gopi Attaluri, Ronald Barber, Naresh Chainani, David
Kalmuk, Vincent KulandaiSamy, Jens Leenstra, Sam Lightstone, Shaorong Liu,
GuyM. Lohman, TimMalkemus, ReneMueller, Ippokratis Pandis, Berni Schiefer,
David Sharpe, Richard Sidle, Adam Storm, and Liping Zhang. 2013. DB2 with
BLU Acceleration: So Much More than Just a Column Store. Proc. VLDB Endow.
6, 11 (2013), 1080–1091.

[119] J Rogers, R Simakov, E Soroush, P Velikhov, M Balazinska, D DeWitt, B Heath,
D Maier, S Madden, J Patel, et al. 2010. Overview of SciDB: Large scale array
storage, processing and analysis. In 2010 International Conference onManagement
of Data, SIGMOD’10. 963–968.

[120] Viktor Rosenfeld, Sebastian Breß, and Volker Markl. 2022. Query Processing on
Heterogeneous CPU/GPU Systems. ACM Comput. Surv. 55, 1, Article 11 (2022),
38 pages.

[121] Christopher J. Rossbach, Yuan Yu, Jon Currey, Jean-Philippe Martin, and Dennis
Fetterly. 2013. Dandelion: a compiler and runtime for heterogeneous systems.
In ACM SIGOPS 24th Symposium on Operating Systems Principles, SOSP ’13,
Farmington, PA, USA, November 3-6, 2013. ACM, 49–68.

[122] Bogdan Răducanu, Peter Boncz, and Marcin Zukowski. 2013. Micro Adaptivity
in Vectorwise. In Proceedings of the 2013 ACM SIGMOD International Conference
on Management of Data. ACM, New York, NY, USA, 1231–1242.

[123] Sebastian Schelter, Shannon Quinn, Suneel Marthi, and Andrew Musselman.
2016. Samsara: Declarative Machine Learning on Distributed Dataflow Systems.

[124] Maximilian Schüle, Matthias Bungeroth, Dimitri Vorona, Alfons Kemper,
Stephan Günnemann, and Thomas Neumann. 2019. ML2SQL - Compiling
a Declarative Machine Learning Language to SQL and Python. In Advances
in Database Technology - 22nd International Conference on Extending Database
Technology, EDBT 2019, Lisbon, Portugal, March 26-29, 2019. OpenProceedings.org,
562–565.

[125] Maximilian Schüle, Frédéric Simonis, Thomas Heyenbrock, Alfons Kemper,
Stephan Günnemann, and Thomas Neumann. 2019. In-Database Machine
Learning: Gradient Descent and Tensor Algebra for Main Memory Database
Systems. In BTW 2019. Gesellschaft für Informatik, Bonn, 247–266. https:
//doi.org/10.18420/btw2019-16

[126] Amir Shaikhha, Yannis Klonatos, Lionel Parreaux, Lewis Brown, Mohammad
Dashti, and Christoph Koch. 2016. How to Architect a Query Compiler. In
Proceedings of the 2016 International Conference on Management of Data (San
Francisco, California, USA) (SIGMOD ’16). ACM, NewYork, NY, USA, 1907–1922.

[127] Anil Shanbhag, Samuel Madden, and Xiangyao Yu. 2020. A Study of the
Fundamental Performance Characteristics of GPUs and CPUs for Database
Analytics. In Proceedings of the 2020 ACM SIGMOD International Conference on
Management of Data. ACM, New York, NY, USA, 1617–1632.

[128] Phanwadee Sinthong and Michael J. Carey. 2021. PolyFrame: A Retargetable
Query-Based Approach to Scaling Dataframes. Proc. VLDB Endow. 14, 11 (2021),
2296–2304.

[129] Statista. 2022. Volume of data/information created, captured, copied, and
consumed worldwide from 2010 to 2025. (Jan. 2022). https://www.statista.com/
statistics/871513/worldwide-data-created/

[130] Statista. 2022. Worldwide AI hardware market revenues. (Jan.
2022). https://www.statista.com/statistics/1003890/worldwide-artificial-
intelligence-hardware-market-revenues/

[131] Mike Stonebraker, Daniel J. Abadi, Adam Batkin, Xuedong Chen, Mitch
Cherniack, Miguel Ferreira, Edmond Lau, Amerson Lin, Sam Madden, Elizabeth
O’Neil, Pat O’Neil, Alex Rasin, Nga Tran, and Stan Zdonik. 2005. C-store: A
Column-oriented DBMS. In VLDB. 553–564.

[132] Michael Stonebraker, Paul Brown, Alex Poliakov, and Suchi Raman. 2011. The
Architecture of SciDB. In Scientific and Statistical Database Management, Judith
Bayard Cushing, James French, and Shawn Bowers (Eds.). Springer Berlin
Heidelberg, Berlin, Heidelberg, 1–16.

[133] Umar Syed and Sergei Vassilvitskii. 2017. SQML: Large-Scale in-Database
Machine Learning with Pure SQL. In Proceedings of the 2017 Symposium on
Cloud Computing. ACM, New York, NY, USA, 659.

[134] OctoML AI team. 2022. TVM on M1 GPUs performance. (Feb.
2022). https://octoml.ai/blog/on-the-apple-m1-beating-apple-s-core-ml-4-
with-50-model-performance-improvements/

[135] Tesla. 2022. Tesla unveils chip to train A.I. models inside its data centers. Retrieved
January, 2022 from https://www.cnbc.com/2021/08/19/tesla-unveils-dojo-d1-
chip-at-ai-day.html

[136] Thomas N. Theis and H.-S. Philip Wong. 2017. The End of Moore’s Law: A New
Beginning for Information Technology. Computing in Science Engineering 19, 2
(2017), 41–50. https://doi.org/10.1109/MCSE.2017.29

[137] TVM. 2022. Bring Your OwnCodegen To TVM. Retrieved January, 2022 from https:
//tvm.apache.org/docs/dev/how_to/relay_bring_your_own_codegen.html

[138] TVM. 2022. Pass Infrastructure. Retrieved January, 2022 from https://
tvm.apache.org/docs/arch/pass_infra.html

[139] Tin Vu. 2019. Deep Query Optimization. In Proceedings of the 2019 International
Conference on Management of Data. ACM, New York, NY, USA, 1856–1858.

[140] Dalin Wang, Feng Zhang, Weitao Wan, Hourun Li, and Xiaoyong Du.
2021. FineQuery: Fine-Grained Query Processing on CPU-GPU Integrated
Architectures. In 2021 IEEE International Conference on Cluster Computing. 355–
365. https://doi.org/10.1109/Cluster48925.2021.00020

[141] Yisu Remy Wang, Shana Hutchison, Jonathan Leang, Bill Howe, and Dan Suciu.
2020. SPORES: Sum-Product Optimization via Relational Equality Saturation
for Large Scale Linear Algebra. Proc. VLDB Endow. 13, 12 (2020), 1919–1932.

[142] Xilinx. 2022. Xilinx AI Engine Technology. Retrieved January, 2022 from
https://www.xilinx.com/products/technology/ai-engine.html

[143] Binhang Yuan, Dimitrije Jankov, Jia Zou, Yuxin Tang, Daniel Bourgeois, and
Chris Jermaine. 2021. Tensor Relational Algebra for Distributed Machine
Learning System Design. Proc. VLDB Endow. 14, 8 (2021), 1338–1350.

[144] Yuan Yuan, Rubao Lee, and Xiaodong Zhang. 2013. The Yin and Yang of
Processing Data Warehousing Queries on GPU Devices. Proc. VLDB Endow. 6,
10 (2013), 817–828.

[145] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin Ma,
Murphy McCauley, Michael J. Franklin, Scott Shenker, and Ion Stoica. 2012.
Resilient distributed datasets: a fault-tolerant abstraction for in-memory cluster
computing. In NSDI 2012.

[146] Jingren Zhou and Kenneth A. Ross. 2002. Implementing Database Operations
Using SIMD Instructions. In Proceedings of the 2002 ACM SIGMOD International
Conference on Management of Data. ACM, New York, NY, USA, 145–156.

15

https://github.com/pytorch/java-demo
https://github.com/pytorch/java-demo
https://pytorch.org/xla/release/1.9/index.html
https://pytorch.org/xla/release/1.9/index.html
https://pytorch.org/docs/stable/tensors.html
https://github.com/pytorch/pytorch/blob/7ee0712642492ef221a69d3fdf13b607f406bd78/aten/src/ATen/native/Unique.cpp
https://github.com/pytorch/pytorch/blob/7ee0712642492ef221a69d3fdf13b607f406bd78/aten/src/ATen/native/Unique.cpp
https://github.com/pytorch/pytorch/blob/7ee0712642492ef221a69d3fdf13b607f406bd78/aten/src/ATen/native/Unique.cpp
http://cidrdb.org/cidr2020/papers/p23-raasveldt-cidr20.pdf
http://cidrdb.org/cidr2020/papers/p23-raasveldt-cidr20.pdf
https://doi.org/10.18420/btw2019-16
https://doi.org/10.18420/btw2019-16
https://www.statista.com/statistics/871513/worldwide-data-created/
https://www.statista.com/statistics/871513/worldwide-data-created/
https://www.statista.com/statistics/1003890/worldwide-artificial-intelligence-hardware-market-revenues/
https://www.statista.com/statistics/1003890/worldwide-artificial-intelligence-hardware-market-revenues/
https://octoml.ai/blog/on-the-apple-m1-beating-apple-s-core-ml-4-with-50-model-performance-improvements/
https://octoml.ai/blog/on-the-apple-m1-beating-apple-s-core-ml-4-with-50-model-performance-improvements/
https://www.cnbc.com/2021/08/19/tesla-unveils-dojo-d1-chip-at-ai-day.html
https://www.cnbc.com/2021/08/19/tesla-unveils-dojo-d1-chip-at-ai-day.html
https://doi.org/10.1109/MCSE.2017.29
https://tvm.apache.org/docs/dev/how_to/relay_bring_your_own_codegen.html
https://tvm.apache.org/docs/dev/how_to/relay_bring_your_own_codegen.html
https://tvm.apache.org/docs/arch/pass_infra.html
https://tvm.apache.org/docs/arch/pass_infra.html
https://doi.org/10.1109/Cluster48925.2021.00020
https://www.xilinx.com/products/technology/ai-engine.html

	Abstract
	1 Introduction
	2 Background
	2.1 Tensor Computation Runtimes (TCRs)
	2.2 Tensor Operations

	3 Query Processing on TCRs
	3.1 Relational Operators as Tensor Programs
	3.2 Challenges
	3.3 Design Choices

	4 Tensor Query Processor (TQP)
	4.1 Data Representation
	4.2 Query Compilation
	4.3 Execution

	5 Operator Implementation In TQP
	5.1 Expressions
	5.2 Sort-Based Join
	5.3 Hash-Based Join
	5.4 Aggregation

	6 Evaluation
	6.1 Single Core Execution on CPU
	6.2 Execution on GPU
	6.3 Scalability
	6.4 Cost/Performance Trade-off
	6.5 black Performance Breakdown
	6.6 Hand-Optimized Plans
	6.7 Prediction Queries
	6.8 Overheads
	6.9 Portability
	6.10 Engineering Effort

	7 Related Work
	8 Conclusion
	Acknowledgments
	References

