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Abstract—Machine learning tasks over image databases often
generate masks that annotate image content (e.g., saliency
maps, segmentation maps, depth maps) and enable a variety
of applications (e.g., determine whether a model is learning
spurious correlations or if an image was maliciously modified to
mislead a model). While queries that retrieve examples based on
mask properties are valuable to practitioners, existing systems
do not support them efficiently. In this paper, we formalize
the problem and propose MASKSEARCH, a system that focuses
on accelerating queries over databases of image masks while
guaranteeing the query result accuracy. MASKSEARCH leverages
a novel indexing technique and an efficient filter-verification
query execution framework. Experiments with our prototype
show that MASKSEARCH, using indexes approximately 5% of
the compressed data size, accelerates individual queries by up to
two orders of magnitude and consistently outperforms existing
methods on various multi-query workloads that simulate dataset
exploration and analysis processes.

I. INTRODUCTION

Machine learning (ML) tasks over image databases com-
monly generate masks that annotate individual pixels in images.
For instance, model explanation techniques [1], [2], [3], [4],
[5] generate saliency maps to highlight the significance of
individual pixels to a model’s output. In image segmentation
tasks [6], [7], [8], masks denote the probability of pixels being
associated with a specific class or an instance, while in depth
estimation tasks [9], [10], masks reflect the depth of each pixel.
Figure 1 shows some examples.

Exploring the properties of these masks unlocks a plethora of
applications. For instance, in the context of model explanation,
examining saliency maps is the most common approach
to understanding whether a model is relying on spurious
correlations in the input data, i.e., signals that deviate from
domain knowledge [11], [12], [13], [14], [15], [16]. Other
applications based on the properties of masks include identify-
ing maliciously attacked examples using saliency maps [17],
[18], [19], monitoring model errors [20], [21], [22] using
segmentation masks, traffic monitoring and retail analytics
using segmentation masks [23], [24].

The wide-ranging applications underscore an emerging
necessity for ML practitioners: the capability to efficiently
query and retrieve examples from image databases together
with their masks, based on the properties of the latter [12],
[25], [7]. Today, ML practitioners lack a system that would
support this task efficiently and at scale. Consider the following
two scenarios inspired by the literature:

Scenario 1 (inspired by [28]): Bob is an engineer developing
a wild animal image classification model using the WILDS
dataset [27]. He notices that the model’s accuracy drops
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Fig. 1: Examples of image masks that annotate image content
for ImageNet [26] images produced by ML tasks.

(a) (b) (c)

Fig. 2: Example images from WILDS [27] with saliency maps
overlaid. Red pixels indicate high saliency and blue pixels
indicate low saliency.

significantly when the background conditions change. So he
computes saliency maps [3] for the misclassified images,
examples of which are shown in Figure 2, where red (or blue)
pixels indicate higher (or lower) importance for the model’s
prediction. He finds that the model focuses on the background
pixels instead of the animals to make predictions. To correct
the model’s focus, Bob augments the dataset and retrains the
model to ensure that it relies on relevant features. He first
finds images where the model focuses on the areas outside the
foreground objects (i.e., the animals, which can be detected by
an object detector). Then, he randomizes the pixels outside the
foreground objects in these images while leaving the original
labels unchanged. These images are added to the dataset and
the model is retrained. Such an approach is known to help
improve model performance [28].

Scenario 2 (inspired by [15]): Alice is developing a model
to detect COVID-19 from chest X-rays. Although the model
achieves high accuracy on training and validation sets, its
predictions in hospitals often contradict PCR test results.
Examining saliency maps of a few randomly selected images,
Alice notices that high-value pixels seem to cluster around
peripheral markers rather than lung regions, indicating the
model is possibly learning confounding features (e.g., lateral
markers) instead of medical pathology. To verify her hypothesis,
Alice analyzes the saliency maps of a larger subset of images
considering different-sized regions of interests corresponding



to the main parts of the lungs.
As the above examples illustrate, querying databases of

masks is important in ML applications. Unfortunately, there is
a lack of system support to efficiently execute these queries [29].
According to [12], to identify examples for which the model
relies on spurious correlations, researchers have to manually
examine the explanation maps for each image. This tedious
approach is clearly untenable and calls for a system that
efficiently supports mask-based queries.

In light of existing challenges, we propose MASKSEARCH,
a system that efficiently retrieves examples based on mask
properties. To build MASKSEARCH, we first formalize a novel,
and broadly applicable, class of queries that retrieve images
(and their masks) from image databases based on the properties
of masks computed over those images. An example query for
Scenario 2 retrieves images for which the model focuses its
attention outside the lung region, specified as a bounding
box. At the core of these queries are predicates on image
masks that apply filters and aggregations on the values of
pixels within regions of interest (ROIs), e.g., filters on the
fraction of salient pixels in the lung region, which indicates
model attention. We further extend the queries to support
aggregations across masks and top-k computations to enhance
the versatility of the supported queries. Aggregations across
masks serve as a powerful tool for comparing trends across
masks, e.g., studying the difference between model saliency
maps and human attention maps [25]. Top-k computations
are also widely used. For example, Alice from Scenario 2
might be interested in finding the top-K X-rays whose saliency
maps have the fewest salient pixels in the lung region. Formal
definitions of our target queries are in §II-A.

Efficiently executing the formulated queries is challenging:
The database of masks is too large to fit in memory; loading
all masks from disk is slow and dominates the query execution
time. Existing methods do not support these queries efficiently.
Using NumPy to load and process the masks, a query that
filters masks based on the number of pixels within an ROI and
a pixel value range takes more than 30 minutes to complete
on ImageNet (Figure 6). Existing multi-dimensional indexing
techniques also do not provide better execution times because
masks are dense arrays. Array databases such as SciDB [30]
and TileDB [31], though designed to process multi-dimensional
dense arrays, are not optimized for efficiently searching through
large collections of small arrays, as required in our target
queries (Figure 6). While masks can be flattened as vectors
and stored in vector databases, the latter support fundamentally
different type of queries as we discuss further in §II-B, and
are not designed for the types of queries in this paper.

MASKSEARCH accelerates the aforementioned queries with-
out any loss in query result accuracy by introducing a new
type of index and an efficient filter-verification query execution
framework. Both techniques work in tandem to reduce the
number of masks that must be loaded from disk during
query execution. The indexing technique, which we call the
Cumulative Histogram Index (CHI), provides bounds on the
pixel counts within an ROI and a pixel value range in a mask.

It is designed to work with arbitrary ROIs (both mask-specific
and constant) and pixel value ranges specified by the user at
query time. These bounds are used during query execution
when deciding whether a mask should be loaded from disk and
processed while guaranteeing the same result as if all masks
had been individually scanned (i.e., MASKSEARCH produces
exact results, not approximate ones).

MASKSEARCH’s query execution employs the idea of pre-
filtering. Using pre-filtering techniques to avoid expensive
computation or disk I/O has been explored and proven to be
effective in many other problems, such as accelerating similarity
joins [32], [33] and queries that contain ML models [34],
[35], [36], [37] in cases where computing the similarity
function or running model inference is expensive during
query execution. MASKSEARCH’s filter-verification execution
framework leverages CHI to bypass the loading of the masks
that are guaranteed to satisfy or not satisfy the query predicate.
Only the masks that cannot be filtered out are loaded from
disk and processed. By doing so, MASKSEARCH overcomes
the limitation of existing systems by reducing the number
of masks that must be loaded to process a query. Moreover,
MASKSEARCH includes an incremental indexing approach that
avoids potentially high upfront indexing costs and enables it
to operate in an online setting.

In summary, the contributions of this paper are:
• We formalize a novel, and broadly applicable, class of queries

that retrieve images and their masks from image databases
based on the properties of the latter, and further extend
the queries to support aggregations across masks and top-k
computations (§II).

• We develop a novel indexing technique and an efficient
filter-verification query execution framework (§III).

• We implement the algorithms in a prototype system,
MASKSEARCH, and demonstrate that it achieves up to
two orders of magnitude speedup over existing methods
for individual queries and consistently outperforms existing
methods on various multi-query workloads that simulate
dataset exploration and analysis processes (§IV).
Overall, MASKSEARCH is an important next step toward the

seamless and rapid exploration of a dataset based on masks
generated by ML models. It is an important component in a
toolbox of methods for ML model explainability and debugging.

II. QUERIES OVER MASKS

This section formalizes queries over masks and discusses
the challenges associated with their efficient execution.

A. Data and Query Model

Data Model. An image is a 2D array of pixel values. A
mask over an image is also a 2D array. The values in a mask,
however, are limited to the range [0, 1.0). Figure 3 shows an
illustrative example of a toy x-ray image and an associated
mask. The example shows a saliency map in which a higher
value indicates that the pixel is more important to the model’s
decision. We can capture this data model with the following
conceptual relational view,



(a) Example x-ray (b) Mask
Fig. 3: A toy image motivated by [15] and its mask. The purple
box is the ROI. Predicates on masks often involve counting
the number of pixels in the ROI with values in a range, e.g.,
# pixels in the ROI with values in (0.85, 1.0) is 2.

MasksDatabaseView (
mask_id INT PRIMARY KEY,
image_id INT, --Image that generated the mask
model_id INT, --Model that generated the mask
mask_type INT, --Type of mask
mask FLOAT[][], ... );

where mask_id, image_id, and model_id store the
unique identifiers of the mask, image, and model that generate
the mask, respectively. mask_type is the identifier of the
type of mask (an ENUM type), e.g., saliency map, human
attention map, segmentation mask, depth mask, etc. The
mask column stores the mask itself. Each mask is a 2D
array of floating points in the range of [0, 1). Additional
columns can store other information, such as ground-truth
labels, predicted labels, and image capture times. With some
abuse of notation, an example tuple in the above view
could be (6, 4,ResNet-50,SaliencyMap, [[0.9, 0.5, . . .], . . .]),
referring to a saliency map (mask #6) computed for image #4
using ResNet-50 [38]. Note that an image can have multiple
or no masks and there cannot be multiple image_ids for the
same mask_id as mask_id is the primary key.

An ROI is a bounding box. Figure 3 shows a user-specified
ROI that corresponds to the part of the image with the
lungs. ROIs are query-dependent, so they are not included
in MasksDatabaseView. In our current implementation,
ROIs is stored as an array of coordinate values representing
the bounding box in a separate table that is joined with
MasksDatabaseView during query processing.
Basic Queries. MASKSEARCH supports queries that specify:
(1) regions of interest within images (e.g., where the user
expects the lungs to be located), (2) filter predicates over the
pixel values in a mask (e.g., all pixel values above a threshold),
and aggregates over those pixels that satisfy the predicates (i.e.,
count of pixels). A query over masks can be expressed with
the following query, where concepts like CP(...) will be
explained in detail below,
SELECT *, CP(mask, roi, (lv, uv)) AS val
FROM MasksDatabaseView
WHERE <filter on CP(...)> [AND | OR] ...
ORDER BY val [ASC | DESC] [LIMIT K]

Region of interest (ROI). The ROI, roi, is a bounding box
represented by pairs of coordinates that are the upper left
and lower right corners of the box. It can be constant for all
masks or different for each mask, e.g., the bounding box of the
foreground object in each image computed by an off-the-shelf
model. The ROI is specified by the user at query time (e.g., the

center of the masks for standardized images such as X-rays) or
obtained from another table (e.g., a table containing bounding
boxes) joined with MasksDatabaseView.
CP function. At the core of a query is the CP function, which
stands for “Count of Pixels”. It takes in a mask, an ROI, a lower
bound (lv), and an upper bound (uv) as input, and returns
the number of pixels in the ROI of the mask with values in
the range of [lv,uv). CP is formally defined as follows,

CP(mask, roi, (lv, uv)) =
∑

(x,y)∈roi

1lv≤mask[x][y]<uv

where 1condition is an indicator function that is 1 if the
condition is true and 0 otherwise. The output of CP is a
scalar value and arithmetic operations can be applied to it.
In our queries, CP is often present in the filter predicate, e.g.,
CP(mask, roi, (lv, uv)) > T , and in the ORDER BY clause,
e.g., ORDER BY CP(mask, roi, (lv, uv)) ASC. Multiple CP
functions can be used in a query, e.g., to specify multiple ROIs,
or to compute multiple ratios of pixels in different ranges. The
CP function is abstracted from the applications that motivated
MASKSEARCH and is based on the observation that they can be
expressed as predicates or aggregations together with predicates
over pixel values and pixel counts.
Example 1: Consider Scenario 2 from §I. Alice, the scientist,
is building a model that takes X-ray images as input and
classifies them as COVID-19 vs. non-COVID. Her model does
not work well once deployed. To investigate the problem, Alice
wants to verify that the model is focusing its attention on the
region that corresponds to the lungs. Hence, she writes a query
that computes the number of salient (e.g., with value > 0.85)
pixels within the lung region, which she specifies manually as
a bounding box, roi. She retrieves all the images where the
number of salient pixels is less than 10,000:
SELECT image_id FROM MasksDatabaseView
WHERE CP(mask, roi, (.85, 1.)) < 10000;

She can also compute the ratio of the number of salient pixels
within the lung region to the total number of salient pixels in
the image. She queries the images with the lowest ratios:
SELECT image_id,
CP(mask,roi,(.85,1.))/CP(mask,-,(.85,1.)) AS r

FROM MasksDatabaseView ORDER BY r ASC LIMIT 25;

Complex Queries. MASKSEARCH further supports aggre-
gations over pixel counts and pixel counts over aggregated
masks. These more complete queries can be expressed with
the following SQL,
SELECT [mask_id | image_id | model_id | ...],
[SCALAR_AGG(CP(mask, roi, (lv, uv)))
| CP(MASK_AGG(mask), roi, (lv, uv))] AS aggregate
FROM MasksDatabaseView
WHERE <filter on CP(...)> [AND | OR] ...
GROUP BY [image_id | model_id | mask_type]
HAVING <filter on aggregate> [AND | OR] ...
ORDER BY aggregate [ASC | DESC] [LIMIT K]

Scalar aggregation. The user can aggregate the outputs of CP
functions for masks of the same image, model, or mask type,
by defining the SCALAR_AGG function, which aggregates the
outputs of CP functions. MASKSEARCH supports common
functions such as SUM, AVG, MIN, and MAX, e.g., the average



of multiple CP functions over masks produced by different
models grouped by image_id.
Mask aggregation. MASK_AGG is used to aggregate
masks themselves. It is a user-defined function that
takes in a list of masks as input and returns a mask:
MASK_AGG → FLOAT[][]. An example of MASK_AGG is
INTERSECT(m1 > 0.8, ...,mn > 0.8), i.e., the intersection of n
masks after thresholding at 0.8.
Example 2: Consider a case where our user in Scenario 2 in
§I, Alice, would like to understand if her model focuses on the
same parts of the X-ray images as human experts. After setting
roi to the full mask, she can write the query below, where
saliency maps have mask_type = 1 and human attention
maps have mask_type = 2,
SELECT image_id,CP(INTERSECT(mask>.7),-,(.7,1.))AS s
FROM MasksDatabaseView WHERE mask_type IN (1, 2)
GROUP BY image_id ORDER BY s DESC LIMIT 10;

Usefulness for segmentation masks. In image segmentation,
each pixel is often assigned a discrete label or a probability
value indicating the likelihood of belonging to a desired class.
In such cases, the query predicates can be set to retrieve
images/masks where a specific label dominates or where the
probability exceeds a threshold in an ROI.

B. Challenges

The fundamental operations in our target queries involve
filtering masks based on pixel values within ROIs, followed
by performing optional aggregations, sorting, or top-k compu-
tations. A baseline approach of loading masks from disk into
memory before query processing is extremely slow because it
saturates disk read bandwidth. A single query on ImageNet [26]
takes more than 30 minutes to complete (Figure 6). While
parallel processing can reduce wall clock times, it does not
reduce the total amount of work done. As we discuss later,
MASKSEARCH reduces the total amount of work required
to process a query, and could benefit from compression and
parallelization, which are orthogonal techniques.

Multi-dimensional indexing techniques do not efficiently
support our target queries for two reasons: (1) they cannot
handle mask-specific ROIs within a single query; (2) their
complexity is high because mask data is dense (e.g., 65 billion
pixels for ImageNet).

Vector DBs, both functionally and practically do not support
our target queries. They are designed for similarity searches
to find matches to a query vector. In contrast, MASKSEARCH
targets queries that retrieve masks based on the number of
pixels within ROIs and pixel value ranges, and optionally
computes aggregations and top-k results. Storing the counts of
pixels metadata in vector DBs is impractical because the ROIs
and pixel value ranges are specified at query time and can be
arbitrary. Additionally, vector DBs often have dimensionality
limits (e.g., Milvus: 32,768 [39] and Pinecone: 20,000 [40]),
which are insufficient for the number of pixels in masks.

Array databases [30], [31] are designed to work with dense
arrays, but they are optimized for complex computations
over small numbers of large arrays rather than efficiently

searching through large numbers of arrays. While they can
load specific slices within a desired ROI rather than entire
arrays, MASKSEARCH avoids loading any pixels at all for a
large fraction of masks, as we explain next.

III. MASKSEARCH

MASKSEARCH efficiently executes queries over a database
of image masks while guaranteeing query result accuracy. The
key challenge is that the database of masks is too large to fit
in memory, and loading and processing all masks is slow.

To accelerate such queries, MASKSEARCH introduces a
novel type of index, called the Cumulative Histogram Index
(CHI) (§III-A), and an efficient filter-verification query exe-
cution framework (§III-B). The CHI technique indexes each
mask by maintaining pixel counts for key combinations of
spatial regions and pixel values. CHI constructs a compact
data structure that enables fast computation of upper and
lower bounds on CP functions for arbitrary ROIs and pixel
value ranges. These bounds are used during query execution
to efficiently filter out masks that are either guaranteed to fail
the query predicate or guaranteed to satisfy it without loading
them from disk. The query execution framework comprises
two stages: the filter stage and the verification stage. During
the filter stage, the framework utilizes CHI to compute bounds
on CP functions to filter out the masks without loading them
from disk. Then, during the verification stage, the framework
verifies the remaining masks by loading them from disk and
applying the full predicate. This framework guarantees the
query result accuracy and overcomes the bottleneck of query
execution by significantly reducing the number of masks that
must be loaded from disk.

A. Cumulative Histogram Index (CHI)

The key goals of CHI are to: (G1) support arbitrary query
parameters lv and uv that specify the range of pixel values,
which are unknown to MASKSEARCH ahead of time, and
(G2) support arbitrary regions of interest, roi, and allow mask-
specific rois in a single query. The rois are also unknown
ahead of time because the user can specify rois arbitrarily.

Key Idea. MASKSEARCH achieves both goals by building
CHI to maintain pixel counts for different combinations
of spatial locations and pixel values for each mask. Con-
ceptually, MASKSEARCH builds an index on the search
key (mask id, roi, pixel value). For each search key, CHI
conceptually holds the number of pixels in the mask with the
specified pixel value within the specified roi.

Building an index on every possible combination of
(mask id, roi, pixel value) is infeasible both in terms of space
and time complexity because the number of possible rois for
each mask is quadratic in the number of pixels in the mask,
let alone the number of masks and possible pixel values.

Instead, CHI is a data structure that efficiently provides
upper and lower bounds on a query predicate, rather than exact
values. This approach leads to a small-sized index while still
effectively pruning masks that are either guaranteed to fail the
predicate or guaranteed to satisfy it. Only a small fraction of



masks must then be loaded from disk and processed to verify
the predicate.

CHI Details. CHI leverages two key ideas: discretization
and cumulative counts. Discretization reduces the total amount
of information in the index, while cumulative counts yield
highly efficient lookups. We explain both here.

To build a small-sized index, MASKSEARCH partitions
masks into disjoint regions and discretizes pixel values into
disjoint intervals. It then builds an index on the combinations
of (mask id, region, pixel value interval), i.e., for each mask,
it maintains pixel counts for combinations of partitioned spatial
regions and pixel value intervals. Spatially, MASKSEARCH
partitions each mask into a grid of cells, each of which is wc by
hc pixels in size. Pixel value-wise, it discretizes the values into
b buckets (bins). MASKSEARCH could use either equi-width
or equi-depth buckets. Our prototype uses equi-width buckets.

After discretization, there are several options for implement-
ing the index. A straightforward option is to build an index on
the search key (mask id, cx id, cy id, bin id), where cx id,
cy id, and bin id identify the coordinates of each unique
combination of grid and pixel-value range (e.g., cx id of 3
corresponds to the grid cell that starts at pixel wc ∗ 3, similarly
for cy id and bin id). For each such key, the index could store
the number of pixels in the mask whose coordinates are in the
cell identified by (cx id, cy id) and with values in the range
[pmin + bin id ·∆, pmin + (bin id+ 1) ·∆), where pmin is
the lowest pixel value across all masks and ∆ is the width
of each bucket. This option would require identifying all the
cells that intersect with roi and all the bins that intersect with
(lv, uv) and perform our query execution (discussed in §III-B)
on the pixel counts of these cells and bins. A more efficient
approach, which we adopt, is to build an index on the search
key (mask id, cx id, cy id, bin id), but, for each key, store
the reverse cumulative sum of pixel counts in the mask with
values in the range [pmin + bin id ·∆, pmax] and coordinates
in the region of ((1, 1), (cx id · wc, cy id · hc)). This reverse
sum enables us to quickly compute bounds on the number
of pixels exceeding a given threshold, which is especially
useful in model explanation workloads. This index is denoted
with H(mask id, cx id, cy id, bin id). We will also use
H(mask id, cx id, cy id) to denote the array of cumulative
sums for all bins, i.e., H(mask id, cx id, cy id)[bin id] =
H(mask id, cx id, cy id, bin id). Recall that a mask id
uniquely identifies a mask, then formally,

H(mask id, cx id, cy id, bin id) = CP(mask, ((1, 1),

(cx id · wc, cy id · hc)), (pmin + bin id ·∆, pmax))
(1)

Example: Figure 4 shows an example with wc = 2, hc = 2,
and b = 2. Each blue mask cell, (xc, yc), marks the corner of a
discretized region. With b = 2, the pixel value range becomes
2 bins, [0, 0.5) and [0.5, 1). We build H(M,xc/wc, yc/hc)
for each blue mask cell (xc, yc), e.g., the blue mask cell
(4, 4), corresponds to index entry (xc = 2, yc = 2),
and H(M, 2, 2)[0] = CP(M, ((1, 1), (4, 4)), (0, 1)) = 16
(all 16 pixels are in [pmin, pmax)) and H(M, 2, 2)[1] =

Fig. 4: An example of CHI, CP, available region, and C.

CP(M, ((1, 1), (4, 4)), (.5, 1)) = 3 (3 pixels are in [0.5, pmax)).

In essence, H(mask id, cx id, cy id, bin id) stores a cu-
mulative sum of pixel counts, considering both spatial and
pixel value dimensions. Storing cumulative sums offers greater
efficiency compared to storing raw values, as it enables rapid
evaluation of pixel counts within a specific range, in terms of
both spatial and pixel value dimensions, by only performing
simple arithmetic operations without having to access all the
bins within the desired pixel value range for all the cells in
the desired spatial region. To illustrate this, we first introduce
the concept of available regions.

Definition 3.1: Let Xc denote {xc|xc ∈
[wc, 2wc, 3wc . . . , w]} and Yc denote {yc|yc ∈
[hc, 2hc, 3hc, . . . , h]}. A region ((x1, y1), (x2, y2)) is
available in the CHI of a mask if (x2, y2) ∈ Xc × Yc and
(x1 − 1, y1 − 1) ∈ (Xc ∪ {0})× (Yc ∪ {0}).
Example: Available regions in Figure 4 are bounding boxes
that start from the bottom-right corner of a blue cell ((0, 0)
included) and end at the bottom-right corner of a blue cell,
e.g., ((3, 3), (4, 6)) is an available region, highlighted with a
dark green bounding box; ((4, 4), (5, 5)) is not an available
region, highlighted with an orange bounding box.

Pixel counts within available regions are used to compute
bounds on CP functions for arbitrary ROIs and pixel value
ranges during query execution (§III-B). Before we get to these
bounds, we explain how to compute pixel counts within an
available region with pixel values within the range of two bin
boundaries. MASKSEARCH performs two steps: (1) compute
the reverse cumulative sums (C below) for the specified region
by looking up the CHI entries (H); (2) calculate pixel counts
between the two bin boundaries by subtracting the relevant
cumulative sums. The details are explained below.

Let C(mask id, r) denote the histogram of the reverse
cumulative pixel counts of region r in mask mask id,
where C(mask id, r)[i] = CP(mask, r, (pmin + i∆, pmax)).
MASKSEARCH can compute C(mask id, ((x1, y1), (x2, y2)))
for any available region ((x1, y1), (x2, y2)) (step (1) above).
Let M denote mask id,

C(M, ((x1, y1), (x2, y2))) = H(M,x2/wc, y2/hc)

−H(M, (x1 − 1)/wc, y2/hc)−H(M,x2/wc, (y1 − 1)/hc)

+H(M, (x1 − 1)/wc, (y1 − 1)/hc)

(2)



where − and + are element-wise subtraction and addition,
respectively. Equation (2) holds because C(mask id, region)
is a (finitely)-additive function over disjoint spatial parti-
tions since each bin of C(mask id, region) is a CP func-
tion which is (finitely)-additive. For any mask id and r,
C(mask id, r)[⌈pmax/∆⌉] is always 0 for notation simplicity.
Example: Figure 4 shows an example of computing
C(M, ((3, 3), (4, 6))).

After MASKSEARCH computes the reverse cumulative sums
of pixel counts, C, for a region r, the pixel counts between
any two bin boundaries can be obtained by subtracting the
cumulative sums of the two bins (step (2) above).

Given a predicate CP(mask, roi, (lv, uv)) > T ,
MASKSEARCH uses CHI to check whether the predicate is
satisfied. At a high level, MASKSEARCH identifies available
regions, r1 and r2, in the CHI of the mask, such that
r1 is the smallest region that covers roi and r2 is the
largest region that is covered by roi. Then, MASKSEARCH
computes C(mask, r1) and C(mask, r2) using Equation (2)
and uses them to compute the lower and upper bounds
of CP(mask, roi, (lv, uv)). Finally, MASKSEARCH checks
whether mask is guaranteed to satisfy or guaranteed to fail
the predicate by comparing the lower and upper bounds with
T . The details are further explained in §III-B.

Since mask id, cx id, cy id, and bin id are all integers,
rather than building a B-tree index or a hash index over the keys,
we create an optimized index structure using an array where
mask id, cx id, cy id, and bin id act as offsets for lookups
in the array. We call this structure the Cumulative Histogram
Index (CHI) and H(mask id) the CHI of mask mask id.
There are several advantages of this optimized structure. First,
it enables MASKSEARCH to only store the values of CHI and
avoid the cost of storing the keys of CHI and the overhead
of building a B-tree or hash index. Second, for any lookup
key, the lookup latency is of constant complexity and avoids
pointer chasing which is common in other index structures.

The time complexity for computing CHI for N masks of
size w × h is O(N · w · h), and this cost is amortized over
time with the technique described in §III-F. The number of
CHI for N masks is N ·w · h/(wc · hc). Each CHI has b bins,
thus taking 4 · b bytes. Hence, the set of CHI for N masks
takes 4 · b ·N · w · h/(wc · hc) bytes in space.

B. Filter-Verification Query Execution

Without loss of generality, in this section, we will show
how MASKSEARCH accelerates the execution of a one-sided
filter predicate CP(mask, roi, (lv, uv)) > T , denoted with P ,
as multiple one-sided filter predicates can be combined to
form a complex predicate. In §III-C, we will show that our
technique applies to accelerating predicates that are in the form
of CP(...) < T or involve multiple different CP functions, e.g.,
CP(...) < CP(...). Aggregations and top-k queries are
discussed in §III-D and §III-E, respectively.

MASKSEARCH takes as input a filter predicate P , and its
goal is to find and return the mask ids of the masks that satisfy
P . At a high level, MASKSEARCH executes the following:

• Filter stage: prune the masks that are guaranteed to fail
the predicate P , and add the masks that are guaranteed to
satisfy P to the result set, before loading them from disk.

• Verification stage: load the remaining unfiltered masks from
disk to memory and verify them by applying predicate P .
If a mask satisfies P , add it to the result set.
It is worth noting that MASKSEARCH guarantees the query

result accuracy because it only prunes the masks that are
guaranteed to fail P and adds the masks that are guaranteed
to satisfy P directly to the result set; it subsequently verifies
any uncertain masks to ensure the query result accuracy.

1) Filter Stage: At a high level, the algorithm works as
follows, for each mask, MASKSEARCH uses the CHI of the
mask to compute bounds of CP(mask, roi, (lv, uv)) and it then
uses the bounds to determine whether the mask will satisfy P
or not. In this manner, it reduces the number of masks loaded
from disk during the verification stage (§III-B2) by pruning
the masks that are guaranteed to fail P and adding the masks
that are guaranteed to satisfy P directly to the result set R.
Deriving the bounds of CP(mask, roi, (lv, uv)) is challenging
because roi and (lv, uv) can be arbitrary and not known in
advance. MASKSEARCH addresses this challenge by leveraging
CHI to derive the bounds for arbitrary roi and (lv, uv).
Notation. P denotes CP(mask, roi, (lv, uv)) > T . θ denotes
the actual value of CP(mask, roi, (lv, uv)). θ̄ and

¯
θ denote

the upper bound and the lower bound on θ computed by
MASKSEARCH, respectively. C(mask id, r) denotes the his-
togram of reverse cumulative pixel counts of the pixel value
bins of region r in mask mask id, where C(mask id, r)[i] =
CP(mask, r, (pmin+i∆, pmax)). When clear from context, we
use C(r) to denote C(mask id, r).

When a session of MASKSEARCH starts, the CHI of each
mask is loaded from disk to memory and will be held in
memory for the duration of the system run time. Note that the
size of the CHI of a mask is much smaller than the size of
the mask itself, and therefore, even if the CHI of a mask is
on disk, computing the bounds is much less expensive than
loading the masks from disk to memory and evaluating the
predicate P on them.

Given a predicate P , for each mask targeted by P ,
MASKSEARCH proceeds as follows:
Step 1: Compute θ̄ and

¯
θ. In this step, MASKSEARCH com-

putes θ̄ and
¯
θ by using the CHI of mask id. MASKSEARCH

uses two approaches to computing two upper bounds, θ̄1 and
θ̄2, on θ, and uses the smaller one as θ̄. The two approaches
are effective in yielding bounds in different scenarios.

Approach 1 first identifies the smallest available region
(definition 3.1) in the CHI that covers roi of mask id. For
any mask id and roi, an available region that covers roi
always exists because the bounding box that covers the entire
mask is always an available region. We denote this region with
roi. Then, C(roi) (i.e., C(mask id, roi)) can be computed
by CHI using Equation (2). Finally, θ̄1 is computed as,

θ̄1 = C(roi)[⌊lv/∆⌋]− C(roi)[⌈uv/∆⌉] (3)

where ⌊·⌋ (and ⌈·⌉) denotes the floor (and ceiling) of ·.



Fig. 5: An example of MASKSEARCH computing the upper
bounds, θ̄1 and θ̄2, given a mask, roi, and (lv, uv).

Approach 2 first identifies the largest available region (defi-
nition 3.1) covered by roi in the CHI for each mask. We denote
this region with roi. Then, C(roi) (i.e., C(mask id, roi)) can
be computed using Equation (2). Finally, θ̄2 is computed as,

θ̄2 = C(roi)[⌊lv/∆⌋]− C(roi)[⌈uv/∆⌉] + |roi| − |roi| (4)

where | · | denotes the area of a region. roi does not always
exist where wc and hc are large. In such cases, θ̄2 is set to ∞.

Finally, θ̄ is computed by taking the minimum of θ̄1 and θ̄2.
To show θ̄ is an upper bound of θ, we first show the following
inequality. Because (⌊lv/∆⌋ ∗∆, ⌈uv/∆⌉ ∗∆) is a superset
of (lv, uv), for any mask id and roi, we have,

C(roi)[⌊lv/∆⌋]− C(roi)[⌈uv/∆⌉] ≥ θ (5)

We now show the following theorem.
Theorem 3.1: θ̄ is an upper bound of θ.

We prove the theorem by showing both θ̄1 ≥ θ and θ̄2 ≥ θ.
For conciseness, we omit mask id in C(mask id, ...) and
omit mask in CP(mask, ...) when clear from context, i.e.,
C(Q) denotes C(mask id,Q) and CP(Q, (lv, uv)) denotes
CP(mask,Q, (lv, uv)). We also use CP(Q \ W, (lv, uv)) to
denote the count of pixels in spatial region Q \W with pixel
values in (lv, uv).

Proof 3.1: We first show θ̄1 ≥ θ.

θ̄1 = C(roi)[⌊lv/∆⌋]− C(roi)[⌈uv/∆⌉] (6)
≥ CP(roi, (lv, uv)) (7)
= CP(roi, (lv, uv)) + CP(roi \ roi, (lv, uv)) (8)
≥ CP(roi, (lv, uv)) = θ (9)

where Inequality (7) follows from Equation (5).
Let L denote (⌊lv/∆⌋ ∗∆, ⌈uv/∆⌉ ∗∆), then,

θ = CP(roi, (lv, uv)) (10)
≤ CP(roi, L) (11)
= CP(roi, L) + CP(roi \ roi, L) (12)
≤ CP(roi, L) + |roi| − |roi| (13)
= C(roi)[⌊lv/∆⌋]− C(roi)[⌈uv/∆⌉] + |roi| − |roi| (14)
= θ̄2 (15)

where Inequality (13) is because the count of pixels in any
region with pixel values in any range is bounded by the total
number of pixels in the region.
Example: Figure 5 shows an example, where the mask is the

same as in Figure 4. The first approach identifies roi, which
is ((3, 3), (6, 6)), and C(M, roi) is computed by Equation (2).
Then, θ̄1 is computed using Equation (3), i.e., C(M, roi)[1]−

C(M, roi)[2] = 8 − 0 = 8. The second approach identifies
roi, which is ((3, 3), (4, 4)), and C(M, roi) is computed
by Equation (2). Then, θ̄2 is computed using Equation (4), i.e.,
C(M, roi)[1]−C(M, roi)[2]+|roi|−|roi| = 2−0+9−4 = 7.
Finally, θ̄ = min(θ̄1, θ̄2) = 7.

The two approaches are effective in yielding bounds in
different scenarios. The first approach is more effective when
roi and roi are close to each other, which would result in a
small difference between θ̄1 and θ. The second approach is
more effective when roi and roi are close to each other.

The lower bound,
¯
θ, can be computed similarly.

Step 2: Determine the relationship between θ̄ and
¯
θ and T .

In this step, MASKSEARCH determines whether the predicate
P is satisfied by the mask based on the relationship between
θ̄ and

¯
θ and T . There are three cases:

• Case 1: θ̄ ≤ T . The mask is pruned because it is impossible
for the mask to satisfy the predicate P .

• Case 2:
¯
θ > T . The mask is directly added to the result set

R because the mask is guaranteed to satisfy P .
• Case 3:

¯
θ ≤ T < θ̄. The mask is added to the candidate

mask set S since it needs to be verified against P in the
verification stage.

Example: Following the example in Figure 5, suppose the
predicate is CP(M, ((3, 3), (5, 5)), (0.7, 1.0)) > 9. We know
that θ̄ = 7 ≤ T = 9, so the mask is pruned in Case 1 and not
loaded from disk to memory.

2) Verification Stage: This stage verifies each candidate
mask in S that was neither pruned nor directly added to the
result set. By loading it from disk and computing the actual
value of θ, and then evaluating the predicate P , MASKSEARCH
determines whether the mask satisfies the predicate P . If the
mask satisfies the predicate P , it is added to the result set R.

C. Generic Predicates

MASKSEARCH supports generic predicates
that involve multiple CP functions, i.e.,
CP1(...) op1 CP2(...) · · · opn-1 CPn(...) > T . Let
F = CP1(...) op1 CP2(...) · · · opn-1 CPn(...). MASKSEARCH
uses the bounds of every CP function to derive the lower and
upper bounds of F and use the bounds to efficiently prune the
masks that are guaranteed to fail the predicate or guaranteed
to satisfy it in the filter stage described in §III-B1, as long as
F is monotonic with respect to each CPi function. Common
operators that make F monotonic include +,−,×.

D. Aggregation

MASKSEARCH supports queries that contain scalar aggre-
gates on CP functions or on the CP function over mask
aggregations, as described in §II. For filter predicates on scalar
aggregates, e.g., SUM(CP(mask, roi, (lv, uv))) > T group
by image id, MASKSEARCH uses the same approach as in
§III-C to efficiently filter out groups of masks associated with
the same image id that are guaranteed to fail the predicate
or guaranteed to satisfy it, since common scalar aggregate
functions (SUM, AVG, and etc.) are monotonic with respect to
the CP function. For filter predicates on mask aggregations, e.g.,



CP(MASK_AGG(mask), roi, (lv, uv)) > T , MASKSEARCH
treats the aggregated masks as new masks and uses the same
approach described in §III-B to process the query. The index
for the aggregated masks is either built ahead of time or
incrementally built (§III-F), which is a limitation of the current
prototype. However, when the mask aggregation is monotonic,
e.g., weighted sum, MASKSEARCH can be easily extended
to support efficient filtering of the aggregated masks using
indexes built for the individual masks.

E. Top-K

To answer top-k queries, MASKSEARCH follows a similar
idea as described in §III-B, but it intertwines the filter and
verification stages to maintain the current top-k result. Without
loss of generality, let’s consider the case of a top-k query
seeking the masks with the highest values of the CP function.
The set of top-k masks can be defined as a set, R, of k masks.
R is initially empty and is conceptually built incrementally
as the query is executed by identifying and adding to R the
next mask, mask (associated with its CP(mask, roi, (lv, uv))
value), that satisfies the following condition,

CP(mask, roi, (lv, uv)) > min
mask′∈R

CP(mask′, roi, (lv, uv)) (16)

MASKSEARCH sequentially processes the masks. For
each mask, it computes the upper bound θ̄ and com-
pares θ̄ with the CP values of the current R. If θ̄ ≤
minmask′∈R CP(mask′, roi, (lv, uv)), the mask is pruned be-
cause it is impossible for the mask to be in the top-k result;
otherwise, MASKSEARCH loads the mask from disk and
computes the actual value of CP(mask, roi, (lv, uv)). It then
updates R by adding the mask to R if it satisfies Inequality 16.

F. Incremental Indexing

As we show in §IV-B and §IV-C, the vanilla MASKSEARCH
system described so far achieves a significant query time
improvement over the baselines with a small index size. The
approach so far, however, incurs a potentially high overhead
during preprocessing to build the index. Before processing any
query, the vanilla approach must build the CHI for every mask
in the database, which could lead to a long wait time for the
user to get the first result.

To address this challenge, we propose building CHI incre-
mentally as queries are executed so that only the masks that
are necessary for the current query are indexed. Every time the
user issues a query, as MASKSEARCH sequentially processes
each mask as described in §III-B, it checks if the CHI of the
mask is already built. If so, MASKSEARCH directly proceeds as
described in §III-B. If not, MASKSEARCH executes the query
by loading the masks from disk and evaluating them against the
predicate. For each mask loaded from disk, MASKSEARCH then
builds the CHI for the mask and keeps it in memory for future
queries in the same session. When a MASKSEARCH session
ends, the CHI for all the masks in the session is persisted
to disk for future sessions. With this approach, the cost of
building the CHI of a mask is incurred once the first time the
mask is loaded from disk, and only if the mask is necessary
for a query.

IV. EVALUATION

A. Experimental Setup

Implementation. MASKSEARCH is written in Python as a
library and can work seamlessly with existing databases that
store and index the metadata of masks and images.
Dataset. We evaluate MASKSEARCH on two pairs of datasets
and models. The first pair of dataset and model, called
WILDS, is from [27]. WILDS contains 22,275 images from
the in-distribution and out-of-distribution validation sets of the
iWildCam dataset [27]. For each image, we use GradCAM [3]
to generate two saliency maps for two different ResNet-50 [38]
models obtained from [27]. Each saliency map is 448× 448
pixels. The second, called ImageNet, contains 1,331,167 images
from the ImageNet dataset [26]. We also use GradCAM [3] to
generate saliency maps for ResNet-50 [38] models. Each mask
in ImageNet is 224× 224 pixels. These two pairs of models
and datasets complement each other in terms of the number
of images (and masks) and the size of the masks.
MASKSEARCH configuration. Unless specified otherwise, we
set b = 16 for pixel value discretization for both datasets;
we use wc = hc = 64 for WILDS and wc = hc = 28 for
ImageNet, so that the uncompressed index sizes are about 5%
of the compressed sizes (6.5 GB for ImageNet and 88 MB for
WILDS). The index building times are 3 minutes for WILDS and
50 minutes for ImageNet. More granular indexes are discussed
in §IV-D.
Baselines. To our knowledge, no existing system reduces the
work of loading masks and computing the CP function. We
compare MASKSEARCH to three baselines: (1) PostgreSQL 10,
storing masks as 2D arrays and implementing CP as a UDF in
C; (2) TileDB 2.17.1 [31] with TileDB-Py 0.23.1, where masks
are stored as a 3D array (mask ID, height, width) and tile sizes
are set to 448×448 for WILDS and 224×224 for ImageNet for
optimal performance; and (3) NumPy 1.21.6, storing masks as
NumPy arrays on disk with a Python-implemented, vectorized
CP function.
Machine configuration. Experiments were run on an AWS
EC2 p3.2xlarge instance with an Intel Xeon E5-2686 v4
processor (8 vCPUs, 61 GiB memory), an NVIDIA Tesla V100
GPU (16 GiB memory), and EBS gp3 volumes (3000 IOPS,
125 MiB/s). The GPU is used only for mask computation. We
evaluate MASKSEARCH in a single-node setup, aligning with
typical data scientist workflows [41].

B. Individual Query Performance

We first evaluate the performance of MASKSEARCH on 5
individual queries motivated by the use cases in §I and §II.
The specific parameters for each query are shown in Table I.
Q1 and Q2 are motivated by Scenario 2 in §I, Q3 is a variant
of Example 1 in §II, Q4 is a variant of Example 2 in §II, and
Q5 is Example 2 in §II.
k is set to 25 for top-k queries because it is a reasonable

number of masks to examine for a scientist. When roi is set
to object, the roi is the bounding box of the foreground object
in the image generated by YOLOv5 [42]. We build the CHI



TABLE I: Summary of evaluated queries based on motivation and related work.
Query Description

Q1 Returns masks s.t. CP(mask, roi, (lv, uv)) > 5000, roi = ((50, 50), (200, 200)), (lv, uv) = (0.6, 1.0), model id = 1
Q2 Returns masks s.t. CP(mask, roi, (lv, uv)) > 15,000, roi = object, (lv, uv) = (0.8, 1.0), model id = 1
Q3 Returns top-25 masks with largest CP(mask, roi, (lv, uv)), roi = ((50, 50), (200, 200)), (lv, uv) = (0.8, 1.0), model id = 1
Q4 Returns top-25 images with largest mean(CP(mask, roi, (lv, uv))) for masks associated with two models, roi = object, (lv, uv) = (0.8, 1.0)
Q5 Returns top-25 images with largest CP(intersect(mask), roi, (lv, uv)) for masks associated with two models, roi = object, (lv, uv) = (0.8, 1.0)

(a) WILDS (b) ImageNet
Fig. 6: End-to-end individual query execution time on WILDS and ImageNet. The index size for MASKSEARCH is ∼ 5% of the
original compressed dataset size for both datasets. Note the log scale on the y-axis.

for all masks prior to executing the benchmark queries and
clear the OS page cache before each query execution. The
median execution time of 5 runs for each query is shown in
Figure 6. In addition, Table II displays the number of masks
loaded from disk by each system during query execution. Note
that all baseline methods load the same number of masks; thus,
the reported value represents their common performance.

As Figure 6 shows, on WILDS, it takes PostgreSQL, TileDB,
and NumPy around 2 minutes to answer each query; on
ImageNet, it takes them more than 30 minutes to answer
each query. The standard deviations of the runs are small,
typically within one second. Profiling these queries showed
that mask-loading from disk dominates the query execution
time. All baseline methods suffer from the same performance
bottleneck: they all load all masks from disk and process them
to generate the query results. Q4 notably takes more time than
the others. This is because it demands the loading of two masks
for every image due to its aggregation over the CP values of
the masks. For Q2, Q4, and Q5 on ImageNet, TileDB is slower
than the other baselines. The reason is that TileDB has to
sequentially load masks from the disk (instead of slicing the
same ROI from multiple masks at once) because the ROIs
in these queries are mask-specific. This results in suboptimal
disk read bandwidth utilization. During the execution of all
queries on PostgreSQL and NumPy and for the other queries
on TileDB, we observed that the disk read bandwidth was
fully utilized, reaching 125 MiB/s, the provisioned disk read
bandwidth for our EBS volumes. This confirms that the query
execution time is dominated by the time required to load the
masks from disk. Therefore, any system that does not reduce
the number of masks loaded from disk during execution can
achieve, at best, a comparable query time to that of NumPy
and PostgreSQL.

MASKSEARCH executes each query in under 5 seconds on
WILDS and in less than 20 seconds on ImageNet, providing
query time speedups of up to two orders of magnitude
over the baselines. Table II highlights the key advantage of
MASKSEARCH: it significantly reduces the number of masks

TABLE II: Number of masks loaded during query execution.
MS = MASKSEARCH. 1.3M = 1,331,167, 2.6M = 2,662,334.

Dataset Method Q1 Q2 Q3 Q4 Q5

WILDS MS 407 40 32 874 48
Any baseline 22,275 22,275 22,275 44,550 22,275

ImageNet MS 2696 3849 2943 1494 2768
Any baseline 1.3M 1.3M 1.3M 2.6M 1.3M

loaded from disk during query execution. Unlike the baselines,
which load all masks targeted by a query, MASKSEARCH
leverages its filter-verification framework to avoid unnecessary
disk operations by skipping masks guaranteed to satisfy or
fail the query predicate. This reduction directly correlates
with the improved query execution times. On ImageNet,
MASKSEARCH’s query time for Q4 is longer compared to
other queries, even though the number of masks loaded for
Q4 is smaller. This discrepancy stems from the additional
computation MASKSEARCH performs for Q4 (2× bound
computation than other queries), as it contains an aggregation.

Using faster disks or parallelizing computation can reduce
wall-clock time for both MASKSEARCH and the baselines,
but they do not decrease the total resources consumed by
the baselines since the same number of masks must still be
loaded and processed. Our experiments show that doubling
the disk read bandwidth reduces query execution time by
approximately 50% for both MASKSEARCH and the baselines,
and parallelizing computation can further reduce query time.
However, these approaches only reduce wall-clock time and not
the total work performed. In contrast, MASKSEARCH reduces
the total work required, as evidenced by the fewer masks loaded
and processed in Table II. When all masks reside in memory, the
query processing bottleneck shifts from disk I/O to evaluating
the CP function for every mask. Our execution framework
can quickly compute bounds and would still accelerate query
execution by avoiding unnecessary CP function evaluation.

We further evaluate MASKSEARCH on larger-scale datasets
by executing Q1, Q2, and Q3 on duplicates of ImageNet and



find that MASKSEARCH’s query time grows linearly with
the dataset size. With more than 10 million masks queried,
MASKSEARCH executes each query in 90 seconds, e.g., for Q2,
querying 1.33 M masks takes around 11 seconds and querying
10.65 M masks takes around 85 seconds.

C. Performance on Different Query Types

We evaluate MASKSEARCH’s performance on three query
types with varying parameters, using 500 randomized queries
per dataset and query type. Execution times of MASKSEARCH
are shown, as baseline methods perform similarly to the queries
analyzed in §IV-B, regardless of the specific query parameters.
• Filter: mask selection queries with a filter predicate
CP(mask, roi, (lv, uv)) > T . For every query, roi is set
as the foreground object bounding box in a mask generated
by YOLOv5 [42]. lv and uv are randomly selected from
[0.1, ..., 0.9] and uv > lv. The count threshold T is randomly
chosen from [0, 1, ..., total # pixels].

• Top-K: returns masks ranked by CP(mask, roi, (lv, uv)).
roi is randomly generated as any rectangle within the masks.
This roi is generated once for each query and remains
constant across all masks. k is set to 25. The result order
(DESC or ASC), is randomly selected for each query.

• Aggregation: returns images by
mean(CP(mask, roi, (lv, uv))) across two GradCAM [3]
masks from different models. Parameters roi, lv, uv, and
result order are randomized and k is set to 25.
Figure 7 displays query execution times, showing median,

range, IQR, and outliers. MASKSEARCH consistently outper-
forms baselines across all query types and parameters, even
in the worst-case scenarios, as baselines load and process all
masks regardless of query parameters.

Query times vary across and within query types. For
example, Filter queries tend to have higher 75th percentile
times due to less efficient filtering compared to Top-K and
Aggregation, which leverage comparisons with dynamic top-k
bounds. On WILDS, the number of masks pruned at the 75th
percentile is 21,184 for Filter, 22,106 for Top-K, and 21,677
for Aggregation.

We observe that the query times tend to differ more
significantly among queries with different parameters than
within the same query type. Execution time differences within
a query type stem primarily from variations in the fraction of
masks loaded (FML). For Filter queries on WILDS, FML values
at the 25th, 50th, and 75th percentiles are 0.002, 0.012, and
0.049, respectively. As discussed in §IV-D, FML determines
MASKSEARCH’s query time for a given dataset.

D. Query Time Analysis

This section analyzes factors affecting MASKSEARCH’s
query execution time using 1500 randomized Filter queries.
Figure 8 shows that query execution time is proportional to
the fraction of masks loaded (FML), defined as the ratio of
masks loaded from disk to the total masks targeted by a query.
Pearson’s correlation coefficient between query time and FML

(a) WILDS (b) ImageNet
Fig. 7: Query time of MASKSEARCH for different query types.
Index size for MASKSEARCH: ∼ 5% of dataset size.

(a) WILDS, Pearson’s r = 0.99 (b) ImageNet, Pearson’s r = 0.96

Fig. 8: Relationship between end-to-end query time and the
fraction of masks loaded (FML) for a query.

is 0.99 for WILDS and 0.96 for ImageNet, confirming that
loading masks and computing CP values dominate query time.

FML depends on query parameters (region of interest roi,
pixel value range (lv, uv), count threshold T ), mask data,
and index granularity. Specifically, FML represents masks not
pruned or directly added to the result set during filtering,
corresponding to Case 3 in Step 2 of the filter stage.

Figure 9 illustrates how FML varies with index size, pixel
value range (lv, uv), and count threshold T . Larger index
sizes produce tighter bounds, reducing FML and query time.
Variations in (lv, uv), roi, and datasets also impact FML due
to differences in pixel value distributions. A higher number
of buckets and smaller cell sizes lead to more precise bounds,
albeit at the cost of increased index sizes. Optimal settings for
these parameters vary across deployment scenarios.

In summary, query time is dictated by FML, which is influ-
enced by query parameters, mask data, and index size. Larger
indexes reduce query time but require more resources, reflecting
a trade-off between index granularity and performance based
on application needs.

E. Multi-Query Workload Performance

In this section, we evaluate MASKSEARCH on multi-query
workloads with and without the incremental indexing technique
(§III-F), which mitigates start-up overheads. As shown in §IV-F,
querying masks is an iterative process where users issue
multiple queries with varying parameters to explore and analyze
the dataset. To simulate this, we generate workloads that reflect
the user’s exploration of masks with specific properties. We
assume a user initially queries masks from certain classes and
progressively explores masks from other classes. For example,
when identifying spurious correlations (see §I), a user might
first target classes with high false positive rates, then query



(a) 6.5 GB, (0.6, 1.0) (b) 6.5 GB, (0.8, 1.0) (c) 23 GB, (0.6, 1.0) (d) 23 GB, (0.8, 1.0)

Fig. 9: Distribution of bounds for ImageNet masks computed by MASKSEARCH. Each subfigure represents a combination
of (index size, (lv, uv)). Each vertical segment represents the lower and upper bounds of CP(mask, roi, (lv, uv)) for a single
mask. FML is the fraction of masks loaded by MASKSEARCH given a predicate CP(mask, roi, (lv, uv)) > T , which is equal
to the fraction of the vertical segments that intersect with the horizontal dashed line defined by T .

(a) WILDS, W2 (b) ImageNet, W2 (c) WILDS, MS-II vs. MS (d) ImageNet, MS-II vs. MS

Fig. 10: Cumulative total time, incl. index building time and query time, for multi-query workloads. MS-II and MS refer to
MASKSEARCH w/ and w/o incremental indexing, respectively. (a) and (b) show the total time for MS, MS-II, and NumPy for
Workload 2; (c) and (d) show the ratio of the cumulative total time of MS-II to that of MS for all workloads. The index size
for MS is ∼ 5% of the corresponding dataset. MS-II builds the index incrementally using the same index configuration as MS.

images predicted as those classes using varying parameters
(e.g., focusing on foreground or background objects).

We generate four workloads per dataset, each consisting of
200 Filter queries as in §IV-C. Each workload is characterized
by a parameter pseen, the likelihood of targeting previously
queried masks. The number of masks targeted, n, is randomly
chosen from [0.1 · N, 0.2 · N, 0.3 · N ], where N is the total
number of masks. To form the mask set, we sample n masks
without replacement, comprising pseen% previously queried
masks and (1 − pseen)% new ones; if there are insufficient
unseen masks, all remaining unseen masks are included and
subsequent queries sample only seen masks. The workloads,
labeled W1, W2, W3, and W4, have pseen values of 0.2, 0.5,
0.8, and 1.0, respectively, where W1 demonstrates the most
exploration and W4 focuses solely on previously queried masks.

Figure 10 presents MASKSEARCH’s performance on the
workloads for both datasets. MS-II refers to MASKSEARCH
with incremental indexing, MS refers to MASKSEARCH without
it, and NumPy represents methods that load and process all
masks for each query. We measure the cumulative total time,
which includes index building and query execution.

Figure 10 (a) and (b) present cumulative total times for W2;
other workloads are omitted because MS and NumPy show
similar trends. MS exhibits slow cumulative growth thanks to
efficient query processing via the filter-verification framework.
However, it incurs a start-up overhead due to the need for

index building for all masks ahead of time, which is included
with the 0-th query in the figure: 3 minutes for WILDS and
50 minutes for ImageNet. With incremental indexing, the first
query takes 29 seconds for WILDS and 6 minutes for ImageNet.
Each subsequent query takes on average 1.6 seconds for WILDS
and 30 seconds for ImageNet.

In contrast, NumPy has no start-up overhead but suffers from
rapidly increasing cumulative time. The indexing cost for MS
is quickly amortized over queries, leading MS to outperform
NumPy after roughly 10 queries, while MS-II eliminates start-
up overhead and achieves comparable query times to MS.

Figure 10 (c) and (d) show the ratio of cumulative times
between MS-II and MS. Initially, the ratio is 0 since MS’s time
includes full index building. The ratio grows rapidly because (1)
MS-II must process unseen masks and build indexes, while (2)
MS can answer queries efficiently using pre-built indexes. MS-
II’s slowest queries are only 20% to 40% slower than those of
MS (with pre-indexing time amortized): on WILDS, 15 seconds
for MS-II versus 11 seconds for MS; on ImageNet, 197 seconds
versus 173 seconds. The ratio varies with workload—W1 shows
the highest initial ratio due to its lower pseen value, which
requires more index building.

The ratio peaks once MS-II finishes indexing and accelerates
subsequent queries. For W1, W2, and W3, the peak exceeds
1.0 because MS-II must load and process all masks on first
query, and MS’s batch indexing benefits from vectorization.



After peaking, the ratio decreases as MS-II’s cumulative time
grows similarly to MS’s. In W4, the ratio remains below 1.0
since only 30% of masks are queried (6683 for WILDS and
399,351 for ImageNet), meaning MS-II avoids unnecessary
indexing; once indexed, the ratio plateaus.

F. Real-World Use Cases

This section shows MASKSEARCH’s real-world utility.
Improving Model Performance with MASKSEARCH on

WILDS. This use case corresponds to Scenario 1 in §I. WILDS
is a benchmark designed to evaluate the robustness of ML
models to distribution shifts [27]. We used MASKSEARCH to
help improve the performance of an image classification model
for the iWildCam dataset in WILDS by identifying images
with spurious correlations and retraining the model with these
images added to the training set after augmentation. The model
we started from was a ResNet-50 model trained via empirical
risk minimization downloaded from the WILDS repository. We
first issued a query to MASKSEARCH to retrieve the top-50
masks (and their corresponding images) which have the fewest
salient pixels (i.e., pixel value > 0.8) in their object bounding
boxes (generated by YOLO [42]). The reason for this query
is that images with spurious correlations often contain salient
pixels in the background that the model may have learned to
rely on; we would like the model to focus on the foreground
object instead. Without MASKSEARCH, this query would take
more than 2 minutes; with MASKSEARCH, it took less than a
second. We then augmented these images by randomizing the
pixels outside the bounding boxes of the objects and keeping
the pixels inside the bounding boxes unchanged [28]. We added
the augmented images to the original training set of iWildCam
with their original labels and retrained the model for 2 epochs.
After retraining, we found that the model’s accuracy improved
from 60% to 70% on the held-out OOD test set of iWildCam,
which is a 16.7% relative improvement. In contrast, simply
augmenting a random set of 50 images and retraining only
increased the model’s accuracy from 60% to 63%.

Understanding Vision Foundation Models with
MASKSEARCH for Ophthalmology and Histopathology.
We worked with a team of computational biologists who
develop vision foundation models for ophthalmology [43] and
histopathology [44]. They generated gradient-based saliency
maps [45] to study the features that the ophthalmology
model learned to predict diseases in 3D optical coherence
tomography (OCT) images. To understand which images
(2D OCT slices) contain the most signal and whether the
signal learned by the model aligns with domain expertise,
they issued series of declarative queries to MASKSEARCH to
efficiently identify slices with the most (or fewest) salient
pixels. They reported this process would have been more
tedious without MASKSEARCH, commenting “MASKSEARCH
makes our work much more efficient and allows us to focus
on the analysis of the results rather than waiting for the results
to be computed.” They also noted that MASKSEARCH can be
used for histopathology where the entire whole-slide images
have large digital resolutions (e.g., 10K-100K × 10K-100K

pixels) and models take patches of these images as input.
These patches are usually 256 × 256 in size, so the number of
patches for a single image can be up to 10K. MASKSEARCH
can help them quickly identify the patches where there are
likely diseased regions (e.g., patches with a large number of
salient pixels).

V. RELATED WORK

Image masks in ML tasks. Masks are widely used in
ML to annotate image content, e.g., saliency maps [1], [2],
[3], [4] and segmentation maps [6], [7], [8]. Practitioners
use them for a variety of applications, including identifying
maliciously attacked examples [17], [18], [19], detecting out-
of-distribution examples [46], monitoring model errors [20],
[21], [22], and performing traffic and retail analytics [23],
[24]. These applications motivate the design of MASKSEARCH
and could utilize MASKSEARCH’s efficient query execution to
quickly retrieve examples that satisfy the desired properties.

Data systems for ML workloads and queries. Numerous
systems have been proposed to better support ML workloads
and queries [47], [48], [49], [50], [51], [52], [53], [54], [55].
MASKSEARCH is related to systems that support the explana-
tion and debugging of ML models [56], [57], [58], [59], [60].
Among these, DeepEverest [60] is the closest to MASKSEARCH.
It is designed to support the efficient retrieval of examples
based on neural representations, helping users better understand
neural network behavior. While MASKSEARCH also focuses
on efficiently retrieving examples, it targets queries based on
mask properties rather than neural representations.

Image databases and querying. Many systems and tech-
niques support efficient queries over image databases [61], [62],
[63], [64], [65]. However, these methods are not optimized
for our target queries. For example, VDMS [62] focuses on
retrieving images based on metadata, while DeepLake [66]
supports content-based queries but lacks support for querying
based on aggregations over pixels. Array databases [30], [31]
are designed for handling multi-dimensional dense arrays but
do not efficiently support searching through large numbers of
arrays. In contrast to MASKSEARCH, these existing systems
do not reduce the work required to execute our target queries.

VI. CONCLUSION

We introduced MASKSEARCH, a system that accelerates
queries that retrieve examples based on mask properties. By
leveraging a novel indexing technique and an efficient filter-
verification execution framework, MASKSEARCH significantly
reduces the masks that must be loaded from disk during
query execution. With around 5% of the size of the dataset,
MASKSEARCH accelerates individual queries by two orders
of magnitude and consistently outperforms existing methods
on various multi-query workloads.
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