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Artificial Intelligence (AI) has become a cornerstone of modern computing, powering a

wide range of applications in fields from face recognition and machine translation to medical

diagnosis and autonomous driving. This transformation is advancing data-driven AI models

that not only learn from vast amounts of data but can generate substantial data artifacts.

These changes introduce significant data management challenges, particularly as AI models

grow in architectural complexity and data intensity, because traditional data management

systems were not designed to handle AI workloads.

Concurrently, the tremendous computational and memory demands of AI workloads

have driven the rapid development of specialized AI hardware and software infrastructure.

This evolution has created systems that not only accelerate AI workloads but offer new

opportunities to improve the performance of relational query processing in data management

systems. Despite these advances, the diversity in hardware characteristics and programming

abstractions, coupled with the lack of native support in traditional data management systems,

presents significant challenges for data management system builders to fully leverage the

exciting potential of such AI infrastructure.

This dissertation aims to bridge the worlds of AI and data management by introducing

new data systems that efficiently support explainable AI, a subset of especially data-intensive

AI workloads, and leveraging AI infrastructure to accelerate relational query processing in



data management systems.

First, we introduce two data systems for efficient explainable AI: DeepEverest and

MaskSearch. Each system supports a different type of AI model explanation task. Deep-

Everest accelerates neural network explanation queries that return input examples with

certain neuron activation patterns; these queries help practitioners understand the functional-

ity of groups of neurons in a neural network by tying that functionality to the input examples.

MaskSearch enables efficient querying over databases of image masks generated by AI

models (e.g., segmentation masks, saliency maps, etc.), supporting the retrieval of masks

with particular characteristics that are crucial for applications such as identifying spurious

correlations, detecting adversarial examples, and monitoring model errors.

Second, we introduce the Tensor Query Processor (TQP), the industry’s first query

processor that compiles SQL queries into tensor programs (i.e., PyTorch programs) and

executes them on any hardware backend supported by the tensor runtime, including CPUs,

GPUs, and TPUs. TQP demonstrates the potential of using AI infrastructure to accelerate

relational query processing in data management systems by supporting the full TPC-H

benchmark and outperforming state-of-the-art systems. Further, it bridges the gap between

AI workloads and relational queries by providing a unified intermediate representation for

efficient execution when both types of workloads are present in the same system.

While much work remains to be done, this dissertation contributes an important step

towards improving data management systems in the novel era of AI.
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Chapter 1

INTRODUCTION

Artificial Intelligence (AI) now powers myriads of applications in fields such as computer

vision [237], natural language processing [68], speech recognition [290], and autonomous

driving [64]. AI models, central to these advancements, learn from large amounts of data and

generate substantial amounts of data artifacts. For example, computer vision models, which

take an image as input and identify all objects within, learn from large image datasets like

ImageNet [90] and generate artifacts such as bounding boxes around objects and attributes

that describe the objects and scenes in the images. Developing these models, training them

on large datasets, investigating what the models are learning, improving them over time,

and deploying them in production are tasks that AI practitioners perform regularly. These

tasks are data-intensive and require significant computational resources, which make use of

specialized infrastructure like GPUs and TPUs. As AI models grow in architectural complexity

and data intensity, practitioners could benefit from more efficient data management systems

to better support their work.

For many decades, data management systems have effectively helped users to work with

their data across various domains. For example, data management systems power most

modern businesses, enabling them to store, query, and analyze their data (e.g., tracking sales,

managing inventory, and making business decisions by analyzing historical data). However,

the advent of the AI era introduces new challenges in data management, particularly in data

storage, indexing, and query processing for AI workloads.

Traditional data management systems were not designed to accommodate these unique

AI workload requirements. First, they are not designed to process large volumes of high-

dimensional data records, e.g., images, text, and model artifacts like activations and gradients
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Figure 1.1: An example image from ImageNet [90] overlaid with a saliency map. The red
regions indicate the pixels that are most important for the model’s prediction.

that are transient for each query. Second, these systems do not address the important tradeoff

between the amount of data (e.g., model artifacts) that needs to be stored and indexed on

disk versus computed on-the-fly in order to answer queries specific to AI workloads that

analyze large volumes of transient data. As a consequence, practitioners are finding it difficult

to leverage current data management systems for their AI workloads.

Data management systems could help AI practitioners with many common workload tasks.

One particularly data-intensive AI workload that has gained significant research attention is

understanding what AI models have learned and identifying the data on which they exhibit

specific behaviors [53, 202, 296, 104, 293, 54, 106, 284, 256, 103, 294, 279, 41, 179, 139, 72,

146, 200, 206, 268]. This task, known as model explanation or interpretation, or explainable

AI in general, is essential for applications in high-stake domains such as healthcare and

finance, and is crucial for debugging and improving models by providing insights into their

prediction processes. For instance, Figure 1.1 shows a saliency map generated by a model

that highlights the pixels in an image that are most important for its prediction. Explainable

AI tasks pose significant challenges that involve analyzing voluminous amounts of data and

model artifacts generated during modeling and prediction [240, 265]; this data can by orders

of magnitude exceed the size of the original dataset and model themselves [182], complicating

efforts to obtain timely insights.



3

The tremendous computational and memory demands of AI workloads are themselves

driving the rapid development of specialized AI hardware and software infrastructure [111,

44, 276, 40, 49, 77, 138, 4, 96, 10, 36, 75]. Billions of dollars are being invested in this

area [251], producing systems that offer new opportunities to both accelerate AI workloads

as well as improve the performance of relational query processing in data management

systems that may run in the same data centers where such AI infrastructure is deployed.

Although data management system builders have effectively utilized multi-core and SIMD

instructions [297, 216, 149], the proliferation of specialized AI hardware, each with its own

characteristics and programming abstractions, and the lack of native support for these devices

in traditional data management systems make it difficult to fully exploit their exciting

potential for relational query processing.

This dissertation aims to bridge the worlds of AI and data management by developing new

data systems that can efficiently support explainable AI workloads and leveraging the capabilities

of AI hardware and software infrastructure to accelerate data management systems. Specifically,

this dissertation introduces three innovative data systems designed to address these challenges:

DeepEverest (Chapter 3) accelerates queries seeking to identify groups of examples in

a dataset for which an AI model behaves similarly; MaskSearch (Chapter 4) accelerates

queries that retrieve examples from a dataset based on the properties of the annotations

generated by AI models; and Tensor Query Processor (TQP, Chapter 5) accelerates relational

query processing by leveraging modern AI infrastructure. DeepEverest is published in

PVLDB Volume 15 [115]. MaskSearch is in submission and a tech report is available on

arXiv [117]. A demonstration paper on MaskSearch is published in VLDB 2024 [272].

TQP is published in PVLDB Volume 15 [116].

The remainder of this Introduction is organized into four sections. Section 1.1 and Sec-

tion 1.2 highlight DeepEverest and MaskSearch, two data management systems designed

to accelerate explainable AI tasks. Section 1.3 highlights TQP. Section 1.4 summarizes the

contributions of this dissertation, and Section 1.5 outlines the organization of the following

dissertation chapters.
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Figure 1.2: An example of a Convolutional Neural Network (CNN) architecture for image
classification. The figure shows the input image, the convolutional layers, the pooling layers,
the fully connected layers, and the output layer. The figure is adapted from [234].

1.1 DeepEverest: Accelerating Interpretation by Example Queries

Deep neural networks (DNNs) are a prominent class of AI models renowned for their ability to

learn complex patterns in data, and they have been widely adopted in various AI applications

such as image classification [119], object detection [118], and natural language processing [68].

Figure 1.2 shows an example of a convolutional neural network (CNN), a type of DNN, that

performs image classification, where multiple layers of operations are connected with neurons.

Each neuron outputs an activation value as the input is propagated through the network,

and the final layer produces the model’s prediction.

Explaining DNNs is crucial for practitioners to gain insights into the knowledge acquired

by their models. Although numerous methods have been proposed, they often fail to scale

effectively when processing large volumes of data artifacts for explanation purposes as models

and datasets grow in size, leading to tedious model explanation and exploration processes for

practitioners [240].

The fundamental building blocks of DNN interpretation are neurons. DNN interpretation

techniques often perform analysis on the activation values of neurons [53, 202, 296, 104, 293, 54].
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When DNNs are trained on tasks such as image classification or scene synthesis (generating

images from textual descriptions), there emerge individual neurons and groups of neurons

that match specific human-interpretable concepts [294, 104, 54], such as “human faces” and

“trees”.

To examine what individual neurons and groups of neurons learn and detect, researchers

often ask interpretation by example queries [170], which are an important class of post-hoc

interpretation methods that explain model predictions without clarifying the underlying

mechanisms of the models. For example, a widely used interpretation by example query is,

“find the top-k inputs (e.g., images in a dataset) that produce the highest activation values for

an individual neuron or a group of neurons” [106, 284, 256, 103, 294, 279, 179, 139]. Another

common query is, “for any input and any group of neurons, use the activations of the neurons

to identify the k nearest neighbors (e.g., images in a dataset) based on the proximity in the

space learned by the neurons” [72, 191, 146, 41, 200, 206, 268]. These queries help users to

investigate and explain the functionalities of neuron groups by tying those functionalities to

the input examples in a dataset. For instance, Mikolov et al. use the latter query to find the

nearest neighbors of words in the latent space to examine the learned representations after

training the word2vec model [191]. Below, we present an example of how a user might apply

interpretation by example queries to understand a DNN.

Example 1.1.1. As illustrated in Figure 1.3, consider a DNN trained to classify handwritten

digit images from the MNIST dataset [164]. A user may want to know what parts of an image

of digit 2 cause the DNN to mispredict it as digit 7 and what neurons detect these parts. To

this end, the user may generate a saliency map and inspect the maximally activated neurons of

different DNN layers based on the conjecture that some group of maximally activated neurons

act as detectors of semantic features in the image (e.g., sharp angles that resemble the digit 7).

In Figure 1.3, the user is interested in layer 12 and finds the three neurons (with activation

values circled) that are most activated in the layer for the sample image. To investigate

whether these neurons exhibit similar behavior for other images, the user may then ask for
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Why is it misclassified?

Maximally activated neurons in layer 12 that 
may recognize a sharp angle at the top of the digit. Two similar (in top-10) misclassified images to image 

659 based on the activations of this group of neurons.

0
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What is learned by the DNN?

Top-k
similar
images?

Other images with similar neuron activation pattern?

Pixel-level attribution

Figure 1.3: An example workflow that uses interpretation by example queries to explain a
model’s prediction. “image 659” comes from the MNIST dataset [164] and 659 is the ID of
the image. Layer 12 and the activation values are hypothetical for the example.

the most similar images to the sample image based on the activation values of the group of

neurons. As shown in Figure 1.3 (right), both these misclassified images returned by the query

have sharp angles that explain the model’s misclassification, and the three neurons with circled

activations from layer 12 may be responsible for detecting these sharp angles.

Though many systems have been developed to enable various forms of DNN interpreta-

tion [41, 140, 139, 159, 227, 240, 182, 265], none supports flexible and efficient interpretation

by example queries. There is therefore a need for a system that can efficiently support such

queries to accelerate the DNN interpretation process.

To fill this gap, we design, implement, and evaluate a system called DeepEverest

(Chapter 3). DeepEverest is specifically designed to accelerate interpretation by example

queries that retrieve groups of examples in a dataset based on the activation values of neurons

in DNNs. It helps researchers and practitioners efficiently and flexibly explore the inner
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workings of DNNs through two types of queries: (1) top-k highest queries, which find the

top-k input examples that produce the highest activation values for a user-specified group of

neurons, and (2) top-k most-similar queries, which find the top-k most similar input examples

based on a given input example’s activation values for a user-specified neuron group. A group

of neurons consists of one or more neurons within a DNN layer.

Executing these interpretation by example queries efficiently with low storage overhead

is challenging and this is what DeepEverest addresses. A baseline approach would be

to materialize the activation values for all inputs and neurons, but this requires significant

storage. For example, storing uncompressed activations of a ResNet50 model for 10,000

images occupies 1.35 TB of disk space. At the other extreme, computing activation values at

query time would avoid the substantial storage overhead but is compute-intensive and thus

slow since it requires DNN inference for the entire dataset. Answering a top-k most-similar

query targeting a late layer of ResNet50 on 10,000 images can take over 2 minutes, making

the interpretation process tedious.

Further, although the target query is a k-nearest neighbor (KNN) search, existing KNN

acceleration methods are not suitable. These methods rely on pre-built data structures, like

trees or hash tables, to accelerate queries [58, 203, 174, 85, 43]. It is impractical to build a

large multidimensional data structure for all neurons in each layer due to high dimensionality

because DNN layers often have thousands of neurons. Constructing data structures for all

possible neuron groups would either limit the user to a small set of possible queries or be

extremely expensive in time and storage, with the number of possible neuron groups growing

exponentially with the neuron count. In all cases, precomputing and storing all activation

values in such data structures would add prohibitive storage overhead.

In DeepEverest, we introduce the neural threshold algorithm (NTA) and the neural

partition index (NPI) to efficiently execute our target queries with low storage overhead. NTA,

based on the classic threshold algorithm (CTA) [92], supports top-k queries for arbitrary

neuron groups. Unlike CTA, which requires computing activations for all inputs at query

time, NTA reduces the number of activations that must be computed during query execution,
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thus significantly improving query time. During preprocessing, NPI partitions input examples

and stores a small amount of information per partition that is later used by NTA to determine

which activation values to compute at query time. During query execution, NTA uses insights

from CTA and information from NPI to decide when to terminate as it incrementally computes

activation values using DNN inference only for small subsets of inputs as needed to answer the

query. Additionally, DeepEverest includes optimizations—such as incremental indexing,

the maximum activation index (MAI) for top-k highest queries, automatic configuration

selection, and inter-query acceleration (IQA)—to accelerate related query sequences.

We evaluate DeepEverest on benchmark datasets and models, and demonstrate that

it significantly accelerates individual interpretation by example queries by up to 63× and

consistently outperforms other competing methods on multi-query workloads that simulate

DNN interpretation processes.

This work first appeared in PVLDB Volume 15 [115]. The code is open-source and

available at https://github.com/uwdb/DeepEverest.

1.2 MaskSearch: Querying Image Masks at Scale

Many machine learning (ML) tasks over image databases commonly generate masks (2D

arrays of floating-point numbers) that annotate individual pixels in images. For instance,

model explanation techniques [254, 248, 241, 292, 246] generate saliency maps to highlight

the significance of individual pixels to a model’s output. In image segmentation tasks [118,

151, 229], masks denote the probability of pixels being associated with a specific class or an

instance. Depth estimation models [59, 208] yield masks reflecting the depth of each pixel,

while human pose estimation models [71, 109] provide masks indicating the probability of

pixels corresponding to body joints. Figure 1.4 shows some examples.

Exploring the properties of these masks unlocks a plethora of applications. For instance, in

the context of model explanation, examining saliency maps is the most common approach to

understanding whether a model is relying on spurious correlations in the input data, i.e., signals

that deviate from domain knowledge [201, 215, 61, 274, 89, 192]. Other applications based

https://github.com/uwdb/DeepEverest
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(a) Segmentation mask (b) Depth estimation mask (c) Saliency map

Figure 1.4: Examples of image masks that annotate image content for ImageNet [90] images
produced by machine learning tasks.

on the properties of masks include identifying maliciously attacked examples using saliency

maps [278, 270, 285], out-of-distribution detection using saliency maps [124], monitoring

model errors [31, 143, 16] using segmentation masks, traffic monitoring and retail analytics

using segmentation masks [84, 83], and others.

These wide-ranging applications underscore an emerging necessity for AI practitioners:

the ability to efficiently query and retrieve examples from image databases together with their

masks, based on properties of the latter [215, 82, 151]. Today, practitioners lack a system to

support this task efficiently and at scale.

Consider the following scenario inspired by the literature:

Example 1.2.1. (inspired by [89]): Alice is a scientist developing a model to detect COVID-

19 based on chest X-rays. She has trained a model that achieves high accuracy on both the

training and validation sets from a public dataset. However, when the model is deployed

to local hospitals, its predictions often contradict the diagnoses based on PCR tests. Eager

to understand why her high-accuracy model is failing in real-world settings, Alice examines

the model saliency maps for the chest X-rays from the training set. She discovers that the

high-value pixels in the saliency maps are concentrated on the markers around the peripheries,

i.e., markers on the edges of the X-rays that do not contain any medical information, instead of
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the lung regions. This observation suggests that the model is learning the confounding factors

in the images (i.e., the lateral markers) rather than the medical pathology of the lungs. Figure

3 in [89] shows example X-rays with their saliency maps that exhibit this phenomenon. To

further investigate, Alice wants to retrieve more examples that exhibit similar mask properties.

This process often requires multiple iterations of querying and analyzing the returned examples,

each time adjusting the region of interest (where the high-value pixels are expected to be)

and/or pixel value range (the range of high-value pixels) specified in the query.

As this example illustrates, querying databases of masks is important in ML applications.

Unfortunately, there is a lack of system support to efficiently execute these queries [123].

According to [215], to identify examples for which the model relies on spurious correlations,

researchers must manually examine the model saliency maps for each image. This tedious

approach is clearly untenable and invites a system that efficiently supports mask-based

queries.

We therefore design, implement, and evaluate MaskSearch (Chapter 4), a system that

efficiently retrieves examples based on mask properties. To build MaskSearch, we first

formalize a novel and broadly applicable class of queries that retrieve images (and their

masks) from image databases based on the properties of masks computed over those images.

At the core of these queries are predicates on image masks that apply filters and aggregations

(i.e., count of pixels) on the values of pixels within regions of interest (ROIs). We further

extend the queries to support aggregations across masks and top-k computations to enhance

the versatility of the supported queries. Aggregations across masks serve as a powerful tool

for comparing trends of different masks, e.g., studying the difference between model saliency

maps and human attention maps [82]. Top-k computations are also widely used; for example,

Alice might be interested in finding the top-k X-rays whose saliency maps have the least

number of high-value pixels in the lung regions.

Efficiently executing the formulated queries is challenging: The database of masks is too

large to fit in memory; loading all masks from disk is slow and dominates query execution
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time; compressing masks does not help due to the overhead of decompression. Existing

methods, including vanilla NumPy and PostgreSQL, take over 30 minutes for queries filtering

masks by pixel count within an ROI and pixel value range on ImageNet. Existing multi-

dimensional indexing techniques also do not improve execution times because they cannot

handle mask-specific ROIs within a single query and their complexity is high because mask

data is dense. Array databases such as SciDB [67] and TileDB [205], though designed to

process multi-dimensional dense arrays, are not optimized for efficiently searching through

large collections of small arrays, as required in our target queries. While masks can be flattened

as vectors and stored in vector databases, MaskSearch differs significantly because it targets

a fundamentally different type of query.

MaskSearch accelerates the aforementioned queries with no loss in query accuracy by

introducing a new type of index and an efficient filter-verification query execution framework.

Both techniques work in tandem to reduce the number of masks that must be loaded from

disk during query execution while guaranteeing the correctness of the query result. The

indexing technique, which we call the cumulative histogram index (CHI), provides bounds on

the pixel counts within an ROI and a pixel value range in a mask. It is designed to work with

arbitrary ROIs (both mask-specific and constant) and pixel value ranges specified by the user

at query time. These bounds are used during query execution when deciding whether to load

and process a mask while guaranteeing the correctness of the query result.

MaskSearch’s filter-verification execution framework leverages CHI to bypass the loading

of masks guaranteed to satisfy or not satisfy the query predicate. Only the masks that cannot

be filtered out are loaded from disk and processed. By doing so, MaskSearch overcomes

the limitation of existing systems by reducing the number of masks that must be loaded

to process a query. Moreover, it includes an incremental indexing approach that avoids

potentially high upfront indexing costs and enables it to operate in an online setting.

We evaluate MaskSearch on large image datasets and demonstrate that it achieves

up to two orders of magnitude speedup over existing methods for individual queries and

consistently outperforms existing methods on various multi-query workloads that simulate
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model explanation and dataset exploration processes.

Overall, MaskSearch is a significant next step toward the seamless and rapid exploration

of a dataset based on masks generated by AI models. We believe it will become an important

component in a toolbox of methods for model explanation and dataset exploration. A

paper on this work is in submission, and a tech report is available on arXiv [117]. The

MaskSearch code is open-source and available at https://github.com/uwdb/MaskSearch.

A demonstration of the system is accepted at VLDB 2024 [272].

1.3 Tensor Query Processing: Incorporating AI Infrastructure into Data Sys-
tems

Data management system vendors have delivered consistent performance improvements

for decades by evolving their software to keep pace with Moore’s law while influencing

hardware development through close relationships with manufacturers. Though data volumes

and demand for analytics are growing faster than ever [250], performance improvements

on CPUs have slowed down [261] even as the count of processor transistors continues to

grow. After adopting multi-core CPU architectures, hardware manufacturers began to

augment their computing platforms with specialized components such as GPUs, FPGAs,

compression and encryption chips, digital signal processors (DSPs), and neural network (NN)

accelerators. Although data management system builders have taken advantage of multi-

core and SIMD instructions effectively [297, 216, 149], the explosive number of specialized

hardware components, each with different characteristics and programming abstractions,

makes it difficult to support all the exciting capabilities that these new powerful devices can

offer.

On the other hand, the tremendous demand for memory and computation in AI [102],

combined with the market fever for AI, is driving unparalleled investments in new AI hardware

and software. Hardware makers (e.g., Intel [111], Apple [44], Xilinx [276], AMD [40]), cloud

vendors and other tech giants (e.g., Amazon [49], Microsoft [77], Google [138], Meta [96]),

startups (e.g., Graphcore [6], Sambanova [12], Cerebras [4]), and car companies like Tesla [259]

https://github.com/uwdb/MaskSearch
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are investing heavily in this space. Venture capitalists alone are pouring nearly $2B a quarter

into specialized hardware for AI, aiming for a market expected to exceed $200B a year

by 2025 [251]. On the software side, companies and open source communities are rallying

behind a small number of big efforts (e.g., PyTorch [10], TensorFlow [36], TVM [75]). The

combination of investments in specialized hardware devices and large software communities

focusing on performance allows these efforts to thrive.

It thus appears that the AI community has made hardware accelerators accessible to

nonspecialists (e.g., data scientists). The fact that the most popular AI frameworks are

open-source creates a virtuous cycle, wherein any hardware vendor interested in the AI space

must support these frameworks well to get adoption. At the same time, these large open

source communities successfully tackle the labor-intensive problem of providing specialized

kernels for various hardware devices, e.g., a month after Apple M1 was announced, TVM

outperformed Apple’s CoreML by 2× [258]. Hardware vendors can also directly improve the

kernels’ performance or the hardware itself [23, 24, 27], which further helps adoption since

the performance improves at each new software and hardware release.

We propose to leverage the groundswell of new hardware devices and software targeting

AI workloads. To demonstrate the viability of this idea, we propose and prototype a new

query processor that runs SQL queries atop tensor computation runtimes (TCRs) such as

PyTorch, TVM, and ONNX Runtime [25]. We call our prototype Tensor Query Processor

(TQP) (Chapter 5) and illustrate its system design in Figure 1.5. TQP transforms a SQL

query into a tensor program that is executable on TCRs. To our knowledge, TQP is the

first query processor built atop TCRs. Careful architectural and algorithmic design enables

TQP to: (1) improve performance significantly relative to popular CPU-based data systems

and match or outperform custom-built solutions for GPUs, (2) demonstrate portability across

a wide range of target hardware and software platforms, and (3) achieve the above with

parsimonious and sustainable engineering effort.

These achievements may seem unexpected since specialized hardware accelerators are

notoriously difficult to program, requiring considerable customization to extract optimal
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Figure 1.5: The system design of the Tensor Query Processor (TQP). IR stands for Interme-
diate Representation.

performance. Furthermore, their programming abstractions differ sufficiently to make our goals

of performance (G1), portability (G2), and parsimonious engineering effort (G3) seemingly

hard to reconcile. However, our innovation is a compilation layer and a set of novel algorithms

that map the classical database abstraction to the prevalent one in AI, essentially mapping

relational algebra to tensor computations. This lets us leverage labor-intensive efforts from

the AI community to port and optimize TCRs across all new specialized hardware platforms.

Pursuing our goals of portability and parsimonious engineering effort, we make a deliberate

decision to target existing tensor APIs rather than customize lower-level operators. Though
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this decision may not initially optimize performance, it leads to sustainability over the longer

term since TQP benefits from any performance enhancement and optimization added to the

underlying software and hardware devices [23]. To validate this proposition, we run TQP on

different hardware settings: from CPUs, to discrete GPUs, to integrated GPUs (Intel and

AMD), to NN accelerators (e.g., TPUs [138]), and web browsers. Furthermore, TQP is able

to run the full TPC-H benchmark on both CPU and GPU with only around 8000 lines of

code, an achievement in itself considering that until 2021, no GPU database could run all 22

TPC-H queries [165].

Key evaluation results show that, on GPUs, TQP outperforms open-source GPU databases

in terms of query execution time; on CPUs, TQP outperforms Spark [282] and is comparable

to a state-of-the-art vectorized engine, DuckDB [224], for several queries. Furthermore,

when ML model inference is used in concert with SQL queries, TQP provides end-to-end

acceleration for a 9× speedup over CPU baselines.

The paper on this work is published in PVLDB Volume 15 [116], and its demo paper [47]

won the Best Demo Award at VLDB 2022. A patent has also been issued for this work [129].

1.4 Summary of Dissertation Contributions

This dissertation introduces techniques and systems to address two core data management

challenges in the novel era of AI: (1) query performance issues in AI model explanation

tasks, and (2) the inability of existing data management systems to efficiently leverage

the powerful capabilities of new AI hardware/software infrastructure. Specifically, our core

contributions are three systems that introduce novel techniques to address these challenges:

(1) DeepEverest, a system that accelerates interpretation by example queries for DNN

interpretation; (2) MaskSearch, a system that accelerates queries over databases of image

masks for model explanation and dataset exploration; and (3) TQP, a query processor that

compiles SQL queries into tensor programs and executes them on any hardware devices

supported by the tensor computation runtime. In summary, this dissertation contributes new

approaches to productively connect the two worlds of AI and data management by improving
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data management systems for explainable AI and leveraging AI infrastructure for accelerating

data management systems.

1.5 Dissertation Organization

Chapter 2 discusses related work. Chapter 3 presents DeepEverest, and Chapter 4 presents

MaskSearch. We discuss TQP in Chapter 5. Finally, Chapter 6 concludes the dissertation.
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Chapter 2

RELATED WORK

This chapter presents an overview of the related work for the three components of this

dissertation: DeepEverest, MaskSearch, and TQP. It is divided into two parts: one for

DeepEverest and MaskSearch, covering related work for data systems for explainable AI,

and the other for TQP, covering related work for relational query processing on AI hardware

accelerators.

2.1 Related Work for DeepEverest and MaskSearch

The main areas of related work for DeepEverest and MaskSearch are DNN interpretation,

image masks in AI tasks, data systems for AI model management and debugging, nearest

neighbor search, and top-k query processing, multimedia databases and querying, and vector

databases. This section presents each area in turn.

2.1.1 DNN Interpretation.

A variety of approaches have been proposed to interpret the internals of DNNs [53, 202, 296,

104, 293, 54, 106, 284, 256, 103, 294, 279, 41, 179, 139, 72, 146, 200, 206, 268]. Approaches

like CAM [295], Grad-CAM [241], and Integrated Gradients [254] generate saliency maps that

highlight the regions of the input image that contribute the most to the model’s prediction.

Other approaches like LIME [227] generate local explanations by approximating the model’s

behavior around a specific input by simpler and more interpretable surrogate models.

Many approaches and systems in this space ask interpretation by example queries that

return the most similar inputs with respect to the activations of a group of neurons of a given

input, or inputs that maximally activate a group of neurons [170, 191, 72, 146, 41, 200, 206,
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268]. They motivate the design of DeepEverest, which does not invent new interpretation

methods but rather builds novel indexes and algorithms that accelerate the execution of these

commonly asked queries for DNN interpretation.

2.1.2 Image Masks in AI Tasks.

Masks are widely used in AI tasks to annotate image content, e.g., saliency maps [254, 248,

241, 292] and segmentation maps [118, 151, 229]. Practitioners use them for a variety of

applications, including identifying maliciously attacked examples [278, 270, 285], detecting

out-of-distribution examples [124], monitoring model errors [31, 143, 16], and performing

traffic and retail analytics [84, 83].

These applications motivate the design of MaskSearch and could utilize MaskSearch’s

efficient query execution to quickly retrieve examples that satisfy the desired properties. For

example, in [201], the authors found that models trained to detect pneumothorax (collapsed

lungs) rely on the presence of chest drains, a device used during treatment, rather than the

actual pathology. MaskSearch could be used to quickly retrieve images for which the model

relies on the presence of chest drains to make predictions.

2.1.3 Data Systems for AI Model Management and Debugging.

Many systems have been proposed to support AI model management [266, 186, 240, 265, 182,

275]. ModelDB [266] is designed to automatically track and index AI models. It contains

native client libraries for various machine learning environments (e.g., spark.ml, scikit-learn),

a backend for model storage, and a web interface for exploring and analyzing AI models and

pipelines. ModelHub [186] is similarly designed and optimized for deep learning models and

workflows. It enables users to store, version, snapshot, query, and share deep learning models

and their associated data artifacts. Both ModelDB and ModelHub are designed to support a

different set of functionalities than DeepEverest and MaskSearch, focusing on model

versioning and search functionality rather than querying over neuron activation patterns or

image masks.
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DeepEverest and MaskSearch fall into the group of systems that support efficient

model diagnosis and interpretation. A number of systems like ModelTracker [41], CN-

NVis [172], and others [70, 140, 158, 139, 177, 161, 279] support visual inspection of AI

models and features, such as visualizing model performance and discrepancies between pre-

diction results on different input examples. However, these systems do not support querying

over neuron activation patterns or image masks that are the focus of DeepEverest and

MaskSearch. They could utilize DeepEverest and MaskSearch to accelerate some of

the queries used to build the visualizations.

DeepBase [240] abstracts model diagnostic queries as hypotheses verification tasks, e.g., do

neurons learn language nuances such as relational dependencies? It lets users identify neurons

that have statistical dependencies with user-specified hypotheses. It takes as input a trained

neural network, a test dataset, and a set of hypotheses represented as Python functions, and

outputs the affinity between the neuron activations and the hypotheses. DeepBase allows users

to quickly identify neurons that have statistical dependencies with user-specified hypotheses

by techniques such as caching, early stopping, and streaming execution. However, DeepBase

does not support interpretation by example queries that are the focus of DeepEverest; it

also does not support querying over image masks, which is the focus of MaskSearch.

Rain [275] proposes complaint-driven training data debugging where a user specifies errors

in the model’s inference results and the system ranks the training examples by using influence

functions [153] such that fixing the top-ranked examples will improve the model’s performance

the most. Rain is designed to support a different set of queries that retrieve examples in a

dataset than DeepEverest (retrieving examples based on neuron activation patterns) and

MaskSearch (retrieving examples based on properties of image masks).

Parmita et al. [182] proposes a system that uses sampling techniques for model diagnosis.

It utilizes model decision boundaries to select samples to diagnose the model’s behavior.

However, it only focuses on aggregate queries, which are different from the queries supported

by DeepEverest and MaskSearch.

MetaStore [288] is a system designed to efficiently collect, store, and analyze gradients in
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deep learning models. It supports efficient analysis on gradients by storing compact interme-

diates called prefix and suffix gradients, which can exactly reconstruct the original gradients

when needed, and by enabling direct execution of analytical operations on these compact

intermediates. MetaStore is designed to support a different set of queries than DeepEverest

and MaskSearch, focusing on gradient analysis rather than neuron activation pattern

analysis.

MISTIQUE [265] is designed to capture, store, and query model artifacts, such as neuron

activations, for efficient model diagnosis. Its technical contributions include activation

quantization for neural networks to minimize storage costs without significant accuracy

loss and similarity-based compression to eliminate redundant data. These techniques are

orthogonal to DeepEverest’s and could be incorporated in DeepEverest to further reduce

the storage overhead. MISTIQUE also proposes a cost model that captures the tradeoff

between materialization and recomputation of the activations for different layers and makes

materialization decisions accordingly. It is possible to use this cost model in a model artifact

caching algorithm, and we compare it with DeepEverest in our experiments (Section 3.3).

None of these systems have addressed the problem of accelerating interpretation by example

queries well because none of them reduce the number of activation values computed during

query execution as DeepEverest does.

Meta’s Segment Anything [151] allows users to query for images and segmentation masks

based on the mask area and the number of masks per image. This system is designed for

querying over segmentation masks, which is similar to MaskSearch. However, Segment

Anything does not support retrieving masks based on filter conditions on aggregations over

pixel values in arbitrary regions of interest, which is the focus of MaskSearch.

In summary, DeepEverest is the first system to formalize and support querying over

neuron activation patterns for arbitrary groups of neurons; MaskSearch is the first system

to formalize and support querying over image masks for arbitrary regions of interest and

pixel value ranges.
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2.1.4 Nearest Neighbor Search.

DeepEverest’s target query is a k-nearest neighbor (KNN) search. While many methods

exist for exact [58, 110, 203, 174] and approximate [85, 43, 273, 131, 137] KNN, the challenge in

DeepEverest is different. These KNN methods must know what dimensions will be queried

before constructing their corresponding data structures in that space. In DeepEverest’s

problem setting, the dimensions of the KNN search are not known ahead of time; they are

defined by the neuron group specified by the user only at query time. Further, the groups

of neurons targeted by different queries are probably different. Therefore, if one were to

use traditional KNN methods, one would have to construct a separate index for each group

of neurons at query time, which would be prohibitively expensive. DeepEverest’s novel

indexing technique and query execution algorithm are designed to address this challenge by

constructing a single index that can be used to answer queries for arbitrary groups of neurons.

2.1.5 Top-K Query Processing.

DeepEverest’s target query is essentially a top-k query which retrieves the k input examples

with the highest activation values for a group of neurons or the lowest distance to a sample

example based on the neuron activations. Top-k query processing is formalized by the seminal

work on the threshold algorithm [92]. The algorithm scans multiple sorted lists and maintains

an upper bound for the aggregate score of unseen objects. Each newly seen object is accessed

(by random access) in every other list, and the aggregate score is computed by applying the

scoring function to the object’s value in every list. The algorithm terminates after k objects

are seen with scores greater than or equal to the upper bound.

Many follow-up approaches propose approximation, optimizations, and extensions [262,

128, 51, 38, 204, 113, 289], but they assume that accesses are available to the underlying

data sources. This assumption does not hold in the problem setting of DeepEverest. The

activations required for the top-k query cannot be stored on disk because of the prohibitive

storage overhead. Computing them at query time also incurs significant computation overhead.
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DeepEverest builds on the seminal work on the threshold algorithm [92]. What is novel in

DeepEverest is that it avoids computing as many activation values as possible at query

time, while keeping the storage overhead low, by building the indexes we design and using

these indexes in a modified threshold algorithm for query execution. The modified threshold

algorithm in DeepEverest is proved to be instance-optimal in Section 3.2.5.

2.1.6 Multimedia Databases and Querying.

Many systems and techniques support efficient queries over multimedia databases [55, 226,

97, 60, 236, 87, 114, 88, 287, 286, 144, 52, 141, 86, 291, 171]. However, these methods are

not optimized for the target queries of MaskSearch. For example, VDMS [226] focuses on

retrieving images based on metadata, while DeepLake [112] supports content-based queries

but lacks support for querying based on aggregations over pixels.

Array databases [67, 205] are designed for handling multi-dimensional dense arrays. They

support efficient operations and queries like slicing, dicing, and aggregation over large arrays,

which are essential for applications where data is represented as array data (e.g., satellite

imagery, climate data). However, they do not efficiently support searching through large

numbers of arrays. In contrast to MaskSearch, these existing systems do not reduce the

work required to execute the target queries. Incorporating MaskSearch’s techniques could

enhance the efficiency of existing systems.

Existing image indexing techniques [97, 60, 236] primarily support similarity search

queries based on visual features such as color, shape, and texture, but do not cater to

MaskSearch’s target queries. Moreover, existing multi-dimensional indexes, as further

discussed in Section 4.1.2, are ill-suited for the target queries of MaskSearch. There are

two reasons: (1) they do not support mask-specific ROIs within a single query; (2) their

complexity is high because mask data is dense. Assuming a constant ROI for all masks, these

techniques require representing each mask’s pixel as a point in the space of (x, y, pixel value),

where x and y are coordinates. In this space, MaskSearch’s target query is an orthogonal

range query followed by an aggregation by mask id. The best known algorithm [73, 74], range
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trees, has a query time of O(k + log2 n) and a preprocessing time of O(n log2 n), where n is

the number of total mask pixels in the dataset, and k is the number of pixels in the cuboid

defined by roi and (lv, uv). n is extremely large because mask data is dense, which makes

using these indexes infeasible.

2.1.7 Vector Databases.

Vector databases [32, 33] have recently gained popularity. While mask data can be represented

as vectors, MaskSearch is different from a vector database because it targets a fundamentally

different workload. Vector databases specialize in vector similarity searches: given a vector as

input, they return the top-k most similar vectors. In contrast, MaskSearch supports queries

that investigate model performance or input data properties: queries that contain predicates

over pixel counts (e.g., find all masks with large salient regions), predicates over aggregations

of pixel counts (e.g., find all masks with few salient pixels in their foreground regions), and

top-k computations over pixel counts within areas of interest (e.g., find masks with the most

salient pixels inside their foreground regions). MaskSearch also supports queries that

combine data generated by different sources (e.g., find all images where a model saliency map

deviates the most from the corresponding human attention map). Vector databases do not

support such queries.

2.2 Related Work for TQP

The main areas of related work for TQP are common representations for relational and

AI workloads, GPUs and hardware accelerators for relational queries, query processing on

heterogeneous hardware, vectorized execution, query compilation, and columnar databases.

This section presents each area in turn.

2.2.1 Common Representations for Relational and AI Workloads.

Since the 1990s [196], there have been many works trying to integrate relational queries with

data science and AI workloads [162, 121, 95, 239, 238, 183, 235, 219, 145, 69, 255, 17, 271,
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155, 213, 247, 130, 280, 63, 127, 80, 62, 187, 147, 39]. To our knowledge, TQP is the first

to propose executing relational queries over tensor computation runtimes (TCRs). Earlier

attempts tried to run a few relational operators on the TPU using TensorFlow [122]. TQP

is orthogonal to previous efforts to optimize relational and tensor algebra (e.g., [127, 271]),

and we believe TQP can leverage them to improve its performance further. An analysis of

matrix query languages can be found in [101]. In this dissertation, we focus on TCRs’ tensor

interface, which is more flexible than a linear algebra API. Nevertheless, it will be interesting

to study whether we can effectively restrict TQP to only use linear algebra operations to

improve relational query performance.

SciDB [252, 228] is a database using arrays as the base data representation. TensorDB [150]

further proposes support for tensor data and decomposition operations inside databases.

SciDB [252], TensorDB [150], and TQP suggest using a format closer to data science and

AI to represent data. However, TQP further exploits TCRs to run both relational and AI

workloads on hardware accelerators. DuckDB [224] is a state-of-the-art vectorized database

system that can be seamlessly embedded within data science pipelines. It does not support

running relational operators on hardware accelerators, but allows users to register and natively

run relational queries over Pandas dataframes on CPUs. TQP can also be integrated with

data science pipelines, and it is further able to operate on hardware accelerators and natively

supports AI workloads.

TQP is the culmination of a series of works around using TCRs for workloads beyond

AI. Hummingbird [195] was the first system showing that it is possible to run traditional

machine learning (ML) models on hardware accelerators using TCRs. Raven [145] showed

that it is possible to optimize relational and ML operators end-to-end by casting them into

a unified intermediate representation (IR) built on top of the ONNX format [8]. TQP is

the latest work along this line. With TQP, we demonstrate that it is possible to build a

query processor on top of TCRs and the tensor abstraction. As a byproduct, TQP compiles

machine learning and relational workloads into a unified intermediate representation, i.e.,

tensor programs that can be optimized and accelerated end-to-end.
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2.2.2 GPUs and Hardware Accelerators for Relational Queries.

In the last decade, several systems have explored running relational queries over GPUs [243,

165, 281, 178, 209, 210, 218]. Paul et al. [211] provides a comprehensive survey of GPU-

accelerated databases. With this trend, there emerge several startups and open-source

projects [3, 7]. However, the majority of them focus mostly on microbenchmarks, while, to

our knowledge, only RateUpDB [165] can support the full TPC-H benchmark. RateUpDB is

a heterogeneous HTAP database system whose query engine is inherited GPUDB [281]. It

has built-in query operators using CUDA/OpenCL and a code generator to generate CUDA

or OpenCL code for query execution. In contrast, TQP compiles relational queries into the

tensor abstraction, which can be run on any hardware platform supported by TCRs. TQP is

able to run the full TPC-H benchmark on both CPU and GPU, thanks to TCRs’ flexibility

to support different hardware backends.

TCUDB [126] suggests using the Tensor Core Unit (TCU) of GPUs for accelerating

relational operators. TCUDB requires an expensive transformation from tables to matrices

and also uses low-level CUDA kernels, while TQP takes advantage of the high-level tensor

interface of TCRs.

While GPUs are the default hardware for running neural network models, there has

also recently been a rise in custom ASICs [138, 6, 4, 12, 44, 96] purposely built for ML

workloads. We believe that ML workloads will become ubiquitous both on the cloud and the

edge, whereby the availability of hardware accelerators and custom ASICs will be widespread.

With TQP, we proposed a solution allowing us to run relational queries on any hardware

platform supported by TCRs, since many ASICs [11, 5, 138] provide high-level interfaces

directly through TCRs or are targetable through tensor compilers [75, 163].

2.2.3 Query Processing on Heterogeneous Hardware.

Several recent efforts have started to explore query execution over heterogeneous hardware,

such as CPU-GPU co-execution [230, 269, 66, 76, 214, 120, 231, 99]. Many of them rely on
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OpenCL [9] to target different hardware platforms. However, targeting a common language

(or similarly a generic compiler, e.g., MLIR [163]), requires non-trivial engineering effort

since each device requires proper tuning [214], algorithms, and data structures (as well

as abstractions/dialects in the MLIR case). In contrast, TQP can natively run on any

hardware platform supported by TCRs, and uses TCRs’ tensor operation implementations

and compilation stacks. Currently, the user has to specify which fragment of the query

should run on which hardware device, but we are exploring how to automate this and enable

co-execution.

A trend arises recently that suggests splitting relational operators into smaller functions

that can be easily composed and efficiently dispatched over heterogeneous hardware [50, 267,

156]. TQP fits in this trend, whereby tensor operations are sub-components.

2.2.4 Vectorized Execution, Query Compilation, and Columnar Databases.

Interpreted (volcano-style [108]) query execution has been the default for databases for

several decades. MonetDB/X100 [65] pioneered the vectorized execution model as well as

the columnar data layout [253]. TQP follows a similar design as columnar databases, where

data is stored in a columnar format with virtual IDs [35], but each column is represented as

a tensor.

Recent works, such as HyPer [197] and others [242, 185, 198], have focused on query

compilation. Nevertheless, since (1) there is no clear winner between query compilation and

vectorized execution [148]; (2) many industry-grade systems use vectorized execution because

it is easier to debug and profile [57]; and (3) compiled systems start to move to vectorized

execution (e.g., Spark with Photon), we evaluate TQP against a state-of-the-art vectorized

engine, DuckDB [224].

On the ML systems side, TensorFlow initially embraced a compiled (graph) execution

model [36], while PyTorch pioneered interpreted (eager) execution [207]. As of version 2.0

eager execution is also the default on TensorFlow. Compilers [75, 15, 30, 163, 152, 93, 94]

and optimization techniques [133, 134, 132] for neural networks have been developed to
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optimize the execution of ML models. With TQP, we aim to ride the wave of innovation in

this domain. While TQP is already integrated with the PyTorch stack and it can generate

TorchScript and TVM models, we are planning to also add the ability to generate TensorFlow

programs and integrate with MLIR. For TQP, interpreted vs. compiled execution is just

another point in the query optimization space, since TCRs allow switching between them

seamlessly.
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Chapter 3

DEEPEVEREST: ACCELERATING DECLARATIVE TOP-K
QUERIES FOR DEEP NEURAL NETWORK

INTERPRETATION

Deep neural networks (DNNs) are increasingly used by AI applications. When training

and deploying DNNs, interpretation is important for researchers to understand what their

models learn. DNN interpretation is a relatively new field of research, and techniques are

evolving. While many new approaches are developed, they often do not scale with the size

of the datasets and models [240]. The problem we address in this chapter is the efficient

execution of a common class of DNN interpretation queries.

The fundamental building blocks of DNN interpretation are neurons. Each neuron outputs

an activation value as the input is propagated through the network. DNN interpretation

techniques often perform analysis on these activation values of neurons [53, 202, 296, 104, 293,

54]. When DNNs are trained on tasks such as image classification or scene synthesis, there

emerge individual neurons and groups of neurons that match specific human-interpretable

concepts [294, 104, 54], such as “human faces” and “trees”.

To understand what individual neurons and groups of neurons learn and detect, researchers

often ask interpretation by example queries [170], which are important constituents of the

class of post-hoc interpretation methods that are applied to trained models, as opposed to

methods that achieve interpretability by restricting model complexity [193]. A widely used

interpretation by example query is, “find the top-k inputs that produce the highest activation

values for an individual neuron or a group of neurons” [106, 284, 256, 103, 294, 279, 179, 139].

Another common query is, “for any input, find the k-nearest neighbors in the dataset using the

activation values of a group of neurons based on the proximity in the latent space defined by
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the group of neurons” [72, 191, 146, 41, 200, 206, 268]. These queries help with investigating

and understanding the functionalities of neuron groups by tying those functionalities to the

input examples in the dataset. Moreover, these queries are staple techniques for verifying

hypotheses of what groups of neurons learn and detect. For instance, Mikolov et al. ask the

latter query to find the nearest neighbors of words in the latent space to examine the learned

representations after training the word2vec model [191]. As a concrete example, consider a

DNN trained to classify images. A user may be interested in understanding what parts of a

dog image cause the DNN to predict its class. The user may inspect the maximally activated

neurons of different layers in the DNN based on the conjecture that groups of maximally

activated neurons act as semantic detectors of features in the image (e.g., floppy ears). To

investigate whether these neurons exhibit similar behavior for other images, the user may

then ask for the most similar images to the sample image based on the activation values of a

group of neurons.

This chapter presents a system called DeepEverest that focuses on accelerating the

aforementioned two kinds of queries: (1) find top-k inputs that produce the highest activation

values for a user-specified group of neurons, and (2) find the top-k most similar inputs based

on a given input’s activation values for a user-specified neuron group. A group of neurons

consists of one or more neurons within a layer of the DNN. We call the first type of query

the top-k highest query and the second type of query the top-k most-similar query.

Executing these interpretation by example queries efficiently with low storage overhead is

challenging. A baseline approach is to materialize the activation values for all inputs and all

neurons. However, this approach requires significant storage space. For example, storing all

the activations uncompressed of ResNet50 for 10,000 images occupies 1.35 TB of disk storage.

At the other extreme, computing all activation values at query time imposes no storage

overhead, but is compute-intensive and extremely slow because it requires DNN inference to

compute the activation values on the entire dataset at query time. For instance, answering

a top-k most-similar query that targets a relatively late layer of ResNet50 on a dataset of

10,000 images takes more than 120 seconds, which renders the DNN interpretation process
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tedious.

Further, although the target query is a k-nearest neighbor (KNN) search, existing ap-

proaches that accelerate KNN queries are not applicable. KNN methods rely on building

efficient data structures such as trees [58, 203, 174] or hash tables [85, 43] in advance for faster

query execution later. One could try to build a single, large, multidimensional data structure

for all neurons in each layer. However, such an index would not perform well because of its

very large dimensionality. DNNs frequently have layers with multiple thousands of neurons,

thus dimensions. One could build data structures for all possible neuron groups that a user

could query. However, this would either limit the user to a small set of possible queries or

would be prohibitively expensive both in time and storage because the number of possible

neuron groups grows exponentially with the number of neurons in each layer. Additionally,

in all cases, precomputing and storing all activation values in such data structures would add

prohibitive storage overhead.

While many systems have been developed to enable various forms of DNN interpreta-

tion [41, 140, 139, 159, 227, 240], none supports flexible and efficient interpretation by example

queries. In prior work [182], we investigated the use of sampling for model diagnosis. That

work, however, focused only on aggregate queries. The closest work to DeepEverest is

MISTIQUE [265]. It introduces storage techniques such as compression and quantization,

which are orthogonal to DeepEverest and could complement our approach. It is, however,

possible to use some of MISTIQUE’s techniques as a caching algorithm, which we compare

against in our experiments.

In DeepEverest, we design an index called the Neural Partition Index (NPI), and an

efficient query execution algorithm, called the Neural Threshold Algorithm (NTA), which

has low storage overhead, reduces the number of activation values that must be computed at

query time, and guarantees the correctness of the query results. NTA builds on the classic

threshold algorithm (CTA) [92], which supports top-k queries that target arbitrary neuron

groups. However, CTA requires the computation of the activations of all inputs in the dataset

at query time. Because the time to compute the activations by performing DNN inference
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(not the calculation of the top-k result) dominates the end-to-end query time, CTA would not

accelerate our target queries. We argue that for any algorithm to improve query time, it must

reduce the number of inputs on which DNN inference is run at query time. DeepEverest

achieves this reduction of DNN inference at query time while keeping the storage overhead

low by building NPI and using it in NTA. Rather than store the raw activations for all

neurons, NPI partitions the inputs and stores a small amount of information per-partition

that is useful when deciding which activation values to recompute at query time. NTA then

uses insights from CTA to decide when to terminate as it incrementally computes activation

values using DNN inference only for small subsets of inputs as needed to answer the query.

We analyze NTA and show that it is instance optimal for finding the query results of our

target queries.

In addition to its fundamental approach, DeepEverest also includes several important

optimizations: (1) incremental indexing to avoid large preprocessing overhead; (2) Maximum

Activation Index (MAI) to accelerate top-k most-similar queries that target maximally

activated neurons and top-k highest queries; (3) automatic configuration selection; and (4)

Inter-Query Acceleration (IQA), which further speeds up sequences of related queries.

Contributions. In summary, the contributions of this chapter are:

• We propose, design, and implement a system called DeepEverest that includes an

efficient index structure and an instance optimal query execution algorithm that accelerates

interpretation by example queries for DNN interpretation while keeping the storage overhead

low.

• We develop additional optimizations for DeepEverest that further accelerate individual

queries, automatically select a good configuration for the system, and accelerate sequences

of related queries.

• We evaluate DeepEverest on benchmark datasets and models. We demonstrate that

DeepEverest, using less than 20% of the storage of full materialization, significantly

accelerates individual interpretation by example queries by up to 63.5× and consistently
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outperforms other methods on multi-query workloads that simulate DNN interpretation

processes.

Organization. The rest of this chapter is organized as follows. Section 3.1 introduces

some background and defines the target queries. Section 3.2 presents DeepEverest,

including its index structure, query execution algorithm, and optimizations. The evaluation of

DeepEverest is presented in Section 3.3. Section 3.4 discusses some potential optimizations

and extensions for DeepEverest. Finally, Section 3.5 summarizes the chapter.

3.1 Preliminaries

A DNN consists of layers composed of units, called neurons, connected by edges with

associated weights. Inputs to a DNN are propagated through the layers. The output of a

neuron is a linear combination of its inputs and their associated edge weights that is optionally

transformed by a nonlinear activation function. For example, an activation function may

output only non-negative values by mapping negative values to 0 [194], or scale inputs to

values in the range (0, 1). The output of each neuron for a given input is called its activation

value or activation. DNN interpretation often involves the study of these activations. Typical

questions that researchers may ask include the interpretation by example queries. These

queries enable researchers to reason about what the DNN learns and identify how groups of

neurons match human-interpretable concepts. In this chapter, we address the problem of

enabling fast queries over activations in a DNN. Conceptually, a DNN and an input dataset

can be described by the relations Neuron(neuronID, layerID, . . .) and Artifact(inputID,

neuronID, activation).

DeepEverest supports two fundamental classes of queries over activations: top-k highest

queries that find the top-k inputs that produce the highest activations for a user-specified

group of neurons and top-k most-similar queries that find the top-k inputs that are most

similar to a user-specified target input based on the activations of a user-selected group of

neurons. The rank of an input is decided by a user-specified distance function (or a default

function), dist. Based on the user-selected neuron group, for top-k highest queries, dist takes
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as input a set of activations and measures their magnitude. For top-k most-similar queries,

dist measures the distance between the input and the target input, and it takes as input a

set of absolute differences between the input’s activations and the target input’s activations.

Note that top-k highest queries can be considered as top-k most-similar queries with a

hypothetical target input whose activations are infinite for all neurons. This distance function

dist must be monotonic, i.e., dist(x1, x2, . . . , xn) ≤ dist(x′
1, x

′
2, . . . , x

′
n) whenever xi ≤ x′

i

for each i. Monotonicity is satisfied by common distance functions, such as lp-distances,

cosine distance (once transformed to normalized l2-distance), and weighted distances like

Mahalanobis distance, among others. The default distance function in DeepEverest is

l2-distance.

3.2 DeepEverest

In this section, we first consider baseline approaches, then describe how DeepEverest

improves upon these baselines to accelerate query execution while keeping the storage overhead

low.

3.2.1 Baselines

We first discuss baseline approaches and explain why applying CTA or any KNN algorithm

would not improve the query time.

PreprocessAll. The first baseline, PreprocessAll, has a high storage cost. It performs DNN

inference on the entire dataset and stores all the activations for all neurons ahead of time.

It executes queries by loading the previously stored activations of the neuron group for all

inputs from disk and maintaining a top-k result set.

ReprocessAll. The second baseline, ReprocessAll, has a high computation cost. It has

no storage overhead and performs no preprocessing. It executes queries by computing the

activations of the layer being queried by DNN inference on all inputs and maintaining a top-k

result set as it performs the computation.
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LRU Cache. The third baseline, LRU Cache, is a disk cache that has a fixed storage budget

with a least-recently-used (LRU) replacement policy. This strategy strikes a balance between

the storage overhead of PreprocessAll and the computation overhead of ReprocessAll. LRU

Cache maintains a fixed-sized disk cache that stores the activations for queried layers. A

query is executed as in PreprocessAll if the activations of the queried layer are present in the

disk cache. Otherwise, it is executed as in ReprocessAll. After that, the activations of the

queried layer are persisted to the disk cache. When the size of the disk cache exceeds the

storage budget, the cache evicts the activations of the least recently used layer.

Priority Cache. The final baseline, Priority Cache, is a technique adapted from MIST-

IQUE [265]. It has a fixed-sized disk cache to store the activations for some layers. As a

preprocessing step, it uses the storage cost model from [265] to pick which layers to store,

assuming that each layer will be queried the same number of times. Under the storage budget,

this cost model prioritizes the layers that save the most query time per GB of data stored.

It performs DNN inference on every input and stores the activations for the layers selected

ahead of time. A query is executed as in PreprocessAll if the activations of the queried layer

are present in the disk cache. Otherwise, the query is executed as in ReprocessAll.

CTA could be applied to each baseline by first using the materialized or recomputed

activations to construct the Artifact table defined in Section 3.1. Artifact is then used to

construct a relation in which each row represents an input, and each column represents a

neuron and contains the absolute difference between the activation of that row’s input and

the target input’s activation on the column’s neuron. CTA can run after sorting the absolute

differences in each column in ascending order, using any monotonic norm of the absolute

differences as the aggregation function.

However, applying CTA (or any KNN algorithm) on top of each of the baselines would not

improve the query time. Using it along with ReprocessAll would not help because ReprocessAll

requires running DNN inference on the entire dataset to compute Artifact at query time.

Similarly, applying it on PreprocessAll would not improve the query time because generating

the relation of absolute differences requires a full scan over Artifact before CTA can be
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Table 3.1: Query time breakdown for baselines for a top-k most-similar query on ImageNet-
ResNet50 (query: SimHigh, neuron group size: 3, layer: late; detail in Section 3.3.1).

Method ReprocessAll CTA [92] K-D Tree [58] Ball Tree [203]

Total query time 121.6 s 121.6 s 121.8 s 121.7 s

DNN inference time 121.4 s 121.4 s 121.4 s 121.4 s

applied. The top-k result could already be computed during the full scan. Further, applying

it on PreprocessAll incurs this strategy’s prohibitive storage overhead. Applying it on top of

LRU Cache and Priority Cache would not improve the query time for the same reasons as

PreprocessAll (for layers in the cache) and ReprocessAll (for layers not in the cache). Given

the prohibitive storage overhead of PreprocessAll, any existing method that supports queries

for arbitrary neuron groups must compute the activations of the neuron group for all inputs

at query time. Table 3.1 shows the query time breakdown for various baselines. The total

query time consists of the time for DNN inference to compute the activations of the queried

neuron group, the time for building the data structure required for each method (it cannot

be computed ahead of time because the neuron group for a query can be arbitrary), and

the time to obtain the top-k result. As the results show, DNN inference is the bottleneck

of query execution. Therefore, any method that does not reduce the number of inputs fed

into the DNN at query time will perform similarly to ReprocessAll. Hence, the query time of

ReprocessAll can represent that of these more advanced methods.

3.2.2 Overview of DeepEverest

As described above, directly applying CTA does not improve the query time because Artifact

must be fully computed for the neuron group at query time, which requires DNN inference

on all inputs. Query execution can be significantly accelerated by avoiding running the DNN

on inputs that will not be one of the top-k results.

We design and build a novel index, called the Neural Partition Index (NPI) (Section 3.2.3),
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and a query execution algorithm, called the Neural Threshold Algorithm (NTA) (Section 3.2.4).

NTA is a modified threshold algorithm. In contrast to CTA, NTA does not require all

activations of all inputs before it starts. It utilizes NPI to progressively access and perform

DNN inference on only the inputs that are possibly in the top-k results. NTA overcomes the

bottleneck of query execution, DNN inference, by reducing the number of inputs on which

DNN inference is performed at query time, while guaranteeing the correctness of the top-k

results and introducing only tolerable storage overhead. Moreover, we show the instance

optimality of NTA (Section 3.2.5) and propose various additional optimizations (Sections 3.2.6

and 3.2.7).

3.2.3 Neural Partition Index (NPI)

A key goal of DeepEverest is to support queries that target arbitrary neuron groups.

Existing partitioning or indexing methods (e.g., K-D Tree, locality-sensitive hashing) must

know which neuron group will be queried ahead of time and construct data structures in

that space. In contrast, DeepEverest constructs indexes for each neuron separately and

therefore is able to answer queries for arbitrary neuron groups. The activations in a DNN can

conceptually be represented by the Artifact relation introduced in Section 3.1. Recall that

neuronID is the identifier for a neuron in the DNN and inputID is the identifier for an input

in the dataset. DeepEverestconceptually builds an index on the search key (neuronID,

activation) and supports queries that return the inputIDs for a given neuronID and range

of activation values. To avoid materializing activations, DeepEverest builds an index

on (neuronID, PID) instead, where PID (partitionID) is the identifier of a range-partition

over activation values for a neuron. DeepEverest builds equi-depth partitions instead of

equi-width partitions because the activation values are usually highly skewed, and equi-depth

partitions adapt better to skewed distributions. Partition 0 contains the largest activations.

The index then supports efficient lookups for a given (neuronID, PID) combination. The

index returns the set of inputIDs whose activations for the given neuronID belong to the

partition identified with PID. Moreover, the index also supports queries that return the PID for
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Figure 3.1: An example of building the Neural Partition Index of three neurons, R1, R2, R3,
for six inputs, x0, . . . , x5.

a given (neuronID, inputID) combination. We call this structure the Neural Partition Index

(NPI) and denote the queries with getInputIDs(neuronID, PID) and getPID(neuronID,

inputID). Additionally, in NPI, for each partition, DeepEverest stores the lower bound

and upper bound of the activations in that partition and supports queries that ask for them.

We denote such queries with lBnd(neuronID, PID) and uBnd(neuronID, PID). The number

of partitions, nPartitions, is configurable and discussed further in 3.2.7.

There are two approaches to implementing the index. The first approach would be to

maintain a set of buckets, each identified with a unique (neuronID, PID) combination as

the key, and, for each bucket, maintain a list of inputIDs. The second approach, which

DeepEverest uses, is to maintain a list of (neuronID, inputID) pairs as keys, and, for
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each entry, store the PID. neuronID, inputID, and PID are integers, so rather than building

a B-tree or a hash index over the keys, we create an optimized index structure using an

array where neuronID and inputID act as offsets for lookups in the array. This enables

DeepEverest to only store the values and therefore avoid the cost of storing the keys.

Figure 3.1 illustrates NPI for an example dataset with three partitions.

During preprocessing, DeepEverest runs DNN inference on all inputs once to build

NPI for every neuron, which requires sorting. The time complexity to compute NPI once

the activations are computed is O(nNeurons · nInputs · log2(nInputs)), but the main source

of overhead is DNN inference, which is a cost proportional to the number of inputs. The

method that DeepEverest adopts is more space-efficient than building an index over

(neuronID, PID) pairs because it costs nNeurons · nInputs · log2(nPartitions) bits rather

than nNeurons ·nInputs · log2(nInputs) bits, where nPartitions << nInputs. NPI also has

much smaller storage overhead compared to fully materializing all activation values. A PID

takes less storage than an activation value because a PID only costs log2(nPartitions) bits,

while an activation value is usually a 32-bit floating point. For example, if DeepEverest

has 8 partitions for each neuron, representing a PID costs 3 bits, which is less than 10% of

the storage cost of full materialization. Storing the lower and upper bounds costs nNeurons ·

nPartitions · 2 · 32 bits, which is normally negligible compared to the cost of storing the PIDs.

3.2.4 Neural Threshold Algorithm (NTA)

Notation. We denote with N the set of all neurons in the DNN and with D the input

dataset. A neuron is denoted with n∈N and an input with x∈D. x is the inputID. The

user issues a query: topk(s,G, k,dist), where s∈D is the sample input (also known as the

target input) of interest to the user. G⊆N is a set of neurons from a single layer in N . k

is the desired number of query results, and dist is the distance function. This function

computes the distance between the set of activations of s and x looking only at the neurons

in G. Table 3.2 lists our frequently used notation.
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PID\Neuron R1 R2 R3

0 0.9 0.7 0.6

1 0.4 0.5 0.0

2 0.0 0.0 0.1
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dPar ord

Figure 3.2: dPar and ord for the execution of NTA for the example query that finds the
most similar inputs to x5 based on the activations of {R1, R2, R3}. For neuron i, c is the
index of the PIDs in ord(i), e.g., when c=0, ord(R1, c)=2.

Table 3.2: Summary of frequently used notation in DeepEverest.

Symbol Meaning

s Sample input (or target input) from D
G Group of neurons from N
topk(s,G, k,dist) Top-k most-similar query
dist Function to compute distances between inputs
gi (or i when clear) The i-th neuron in G
act(i, x) Activation value of gi for input x
dist(s, x,G) Distance between s and x based on G
top Set of top-k inputs that are closest to s
Pn Set of partitions for neuron n
getInputIDs(n, p) inputIDs of a single partition p∈Pn

sPID(n) PID to which s belongs for neuron n
lBnd(n, p) Lower bound of a single partition p∈Pn

uBnd(n, p) Upper bound of a single partition p∈Pn

NTA returns the set of top-k inputs that are closest to the target input when considering

only the neurons in G. This set of top-k inputs can be defined as a set top ⊆ D of k inputs.

top is initially empty and is conceptually built incrementally by identifying and adding to top

the next input that satisfies:

arg min
x∈D\top

{dist(s, x,G)} (3.1)
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Neuron R1 R2 R3

toRun {x4, x5} {x4, x5} {x2, x5}

toRun (c = 0)
Neuron R1 R2 R3

toRun {x2, x3} {x1, x3} {x1, x4}

toRun (c = 1)

(a) Build toRun

Input newly computed x2 x4

dist 1.5 0.3

dist(s, x, G) (c = 0) dist(s, x, G) (c = 1)

(x, dist(s, x, G)) (x4, 0.3) (x2, 1.5)

top (c = 0) top (c = 1)
(x, dist(s, x, G)) (x4, 0.3) (x2, 1.5)

Input newly computed x1 x3

dist 1.6 1.9

(b) Perform DNN inference to compute dist and update top

Neuron R1 R2 R3

minDist 0.1 0.1 0.0

minDist (c = 0)
Neuron R1 R2 R3

minDist 0.7 0.6 0.4

minDist (c = 1)

Neuron R1 R2 R3

(min, max) (1.1, 1.2) (1.1, 1.2) (1.2, 1.6)

minBoundary, maxBoundary (c = 0)
Neuron R1 R2 R3

(min, max) (1.1, 1.8) (1.1, 1.7) (1.0, 1.6)

1.5 > t = 0.1 + 0.1 + 0.0 = 0.2 (c = 0) 1.5 < t = 0.7 + 0.6 + 0.4 = 1.7 (c = 1)

Neuron R1 R2 R3

(F, V) (∞, 1) (∞, 1) (1, 1)

F, V (c = 0)
Neuron R1 R2 R3

(F, V) (∞, 1) (∞, 1) (∞, 1)

F, V (c = 1)

minBoundary, maxBoundary (c = 1)

(c) Check termination

Figure 3.3: Intermediate variables for the execution of NTA for the example query. The
values when c=0 are shown on the left, and the values when c=1 are shown on the right.

We further denote with gi (or i when clear) the i-th neuron in set G, and with act(i, x) the

activation of neuron gi on input x. gi is the neuronID. For each neuron n∈N , NPI includes

the set of partitions, Pn. We denote a single partition for neuron n with p∈Pn, and p is

the PID. We denote the lower and upper bounds of this partition p∈Pn with lBnd(n, p) and

uBnd(n, p).
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NTA proceeds as follows,

Step 1: Load indexes. We assume that NPI is initially on disk. This step reads the NPI

for the neurons gi∈G from disk. The index holds the set of partitions, their lower and upper

bounds, and the PIDs of each input for each gi∈G.

Step 2: Compute target activations. For each gi∈G, compute act(i, s), the activation

value for input s and neuron gi by running DNN inference on input s. A single inference pass

is sufficient to compute the activations for all neurons in G.

Step 3: Order partitions. This step computes the order by which the partitions are

accessed by NTA for each neuron. Let sPID(i) denote the PID to which s belongs for neuron

gi. For each neuron gi∈G and partition p∈Pi, compute dPar(i, p) as,

dPar(i, p) =


0, p = sPID(i)

lBnd(i, p)− act(i, s), p < sPID(i)

act(i, s)− uBnd(i, p), p > sPID(i)

(3.2)

which is the distance between the target input’s activation value for neuron gi and the closest

activation value in partition p. For each neuron gi, sort the partitions in Pi on their dPar(i, p)

values in ascending order and put them in a list, denoted with ord(i). Later steps will process

the partitions in the order specified by ord(i).

Example: To illustrate the first three steps, consider a query topk(x5, {R1, R2, R3}, 2, l1-

distance) that finds the top-2 most similar inputs to x5 based on the activations of

{R1, R2, R3}, using the example dataset in Figure 3.1. In this example, s=x5, G={R1, R2, R3}.

Step 1 reads from disk PID, lBnd, and uBnd shown in Figure 3.1. Step 2 runs DNN infer-

ence to compute the activations for x5, (act(R1, x5), act(R2, x5), act(R3, x5))=(1.1, 1.1, 1.2).

Step 3 computes dPar and ord for {R1, R2, R3}, as shown in Figure 3.2.

Step 4: Find top-k. This step runs the modified threshold algorithm. It starts with the

partitions to which the target input belongs, and it expands its search from there. Unlike

CTA, this step incrementally computes the activations for candidate inputs and does so in

batches to get good GPU performance. This step proceeds as follows,
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Starting with an index c = 0:

Step 4 (a): For each neuron gi, maintain a set toRuni that contains the inputs whose

activations should be computed. Access ord(i, c) to get the partition that contains the next

most similar inputs. Query NPI to get the inputIDs that belong to this partition ord(i, c)

and add them to toRuni, i.e., toRuni←getInputIDs(i, ord(i, c)).

Example: as shown in Figure 3.3a, when c = 0, toRunR1,0 = {x4, x5} because ord(R1, 0) =

2.

Step 4 (b): For each neuron gi, compute the activations for the inputs in toRuni (excluding

those that have already been computed) by running DNN inference in batches. toRuni is

cleared after DNN inference. Note that this inference step computes the activations for all neu-

rons in the neuron group being queried. Compute the distance between each newly computed

input x and the target input s as dist(s, x,G) = dist(|act(0, x)− act(0, s)|, . . . , |act(|G| −

1, x)− act(|G| − 1, s)|). Update top if dist(s, x,G) is one of the k-smallest NTA has seen so

far, i.e., input x is one of the k-most similar inputs to the target input s seen so far. Ties are

broken arbitrarily.

Example: as shown in Figure 3.3b, when c=0, the activations of inputs x2, x4 are computed

(x5 was computed in Step 1). The distances from x2 and x4 to x5 are 1.5 and 0.3, respectively.

Step 4 (c): Maintain a range of seen activations for inputs from toRuni for each neuron gi,

which is the range of activations such that NTA has seen every input with an activation in

the open interval of this range. It is possible that NTA has seen one or more inputs from

other neurons’ toRun sets with activations outside of this range. However, the open interval

of this range denoted by (minBoundaryi,maxBoundaryi) only contains the activations for

the inputs that NTA is guaranteed to have seen.

Let minDisti be the shorter distance from the boundaries of this range to the target input

for each neuron gi: minDisti = min {Fi·|minBoundaryi−act(i, s)|, Vi·|maxBoundaryi−act(i, s)|},

where Fi is an indicator function that indicates whether NTA has seen the last partition

(inputs with the lowest activations) of neuron gi, and Vi is another indicator function that
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indicates whether the 0-th partition (inputs with the highest activations) of neuron gi has

been seen. Specifically, Fi=∞ when the last partition of neuron gi has been seen; Fi=1

otherwise. Vi=∞ when the first partition of neuron gi has been seen; Vi=1 otherwise. Define

the threshold to be,

t = dist(minDist0,minDist1, . . . ,minDist|G|−1) (3.3)

The threshold, t, represents the smallest possible distance to s from any unseen input. Hence,

the termination condition is,

max
x∈top
{dist(s, x,G)} ≤ t (3.4)

where maxx∈top {dist(s, x,G)} represents the maximum distance to the target input s in the

current top-k result set. As soon as this inequality holds, halt and return top as the query

results.

Example: as shown in Figure 3.3c, minBoundaryi, maxBoundaryi and minDisti are

maintained and calculated for {R1, R2, R3}. For example, when c = 0, minBoundaryR1 = 1.1,

maxBoundaryR1 = 1.2. Since NTA has seen the last partition (2) and has not seen the first

partition (0), FR1 = ∞, VR1 = 1. Therefore, minDistR1 = |maxBoundaryR1 − actR1,x5| =

|1.2−1.1| = 0.1.

When c = 0, t = 0.2 < 1.5 = maxx∈top {dist(s, x,G)}, so NTA does not halt. When c = 1,

t = 1.7 ≥ 1.5 = maxx∈top {dist(s, x,G)}, so NTA halts and returns top as the query result. It

is worth noting that the cost of DNN inference on x0 is not incurred because it is impossible

for x0 to be one of the top-2 results.

Step 4 (d): Increment c by 1. Repeat Step 4 (a) - (d) until all partitions have been seen or

the halting condition in Step 4 (c) is satisfied.

The pseudocode is shown in Algorithm 3.1 and Algorithm 3.2.

The key innovation of NTA compared to CTA is in its processing of the inputs partition-

by-partition using NPI until the termination condition is met. NTA runs DNN inference on

only the necessary partitions of inputs for it to be certain that it has the precise top-k results

when it terminates. This approach significantly reduces the number of inputs on which DNN
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Algorithm 3.1 The Neural Threshold Algorithm for top-k most-similar queries.

function answerQuery(model,D, s,G, k,dist) ▷model: the DNN, D: dataset, s:
sample image, G: neuron group, k: number of results to return, dist: function to compute
distances between inputs

layer ← getLayer(G)
P, lBnd, uBnd← loadIndex(layer) ▷Load indexes
for all gi ∈ G do ▷Pi contains the partitions for neuron gi

Pi ← getPartitions(P, gi)

sampleAct← modelInference(model, layer, s) ▷Compute the activations for s by
DNN inference

Initialize act to an empty map that contains the activations of the neuron group for
accessed inputs

for all gi ∈ G do
act(i, s)← sampleAct(i)

for all gi ∈ G do
sPID(i) = P −−> getPID(gi, s)
Initialize the list dPar(i)
for all p ∈ Pi do ▷dPar(i, p): the distance from each partition p for neuron gi to

s
if p == sPID(i) then dPar(i, p)← 0
else if p < sPID(i) then dPar(i, p)← lBnd(i, p)− act(i, s)
else dPar(i, p)← act(i, s)− uBnd(i, p)

for all gi ∈ G do ▷ord(i): the order by which the partitions for neuron gi are accessed
ord(i)← argsort(dPar(i))

for all gi ∈ G do ▷Initialization of some variables
Fi ← 1, Vi ← 1
minBoundaryi ←∞, maxBoundaryi ← −∞

c← 0, top← ∅ ▷Starting with c = 0; top: current top-k result set
inputRun← {s} ▷inputRun: set of inputs that have been run for DNN inference
NTA-Loop ▷The main loop of the Neural Threshold Algorithm, detailed in Algo-

rithm 3.2
return top

inference is performed at query time compared to computing the activation values for all

inputs at query time. It further improves query performance by utilizing batch processing

on GPUs. Inputs that share a partition are sent to the DNN for inference all at once. NTA

along with NPI also has much smaller storage overhead compared to fully materializing the
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Algorithm 3.2 The main loop of the Neural Threshold Algorithm.

while True do
for all gi ∈ G do

if ord(i, c) does not exist then return top ▷Return if all partitions have been
seen

toRuni ← P −−> getInputIDs(i, ord(i, c))

if exitF lag then break

toRunUnion←
⋃

gi∈G toRuni \ inputRun
toRunAct← modelInference(model, layer, toRunUnion) ▷Run DNN inference in

batches
for all x ∈ toRunUnion do

Initialize the list diff
for all gi ∈ G do

act(i, x)← toRunActi,x
diffi ← |act(i, x)− act(i, s)|

dist(s, x,G)← dist(diff) ▷Compute the distance between x and s
if |top| < k or dist(s, x,G) < getMaxDist(top) then

update(top, x, dist(s, x,G)) ▷Update top if x is one of the k-most similar seen

for all gi ∈ G do
for all x ∈ toRuni do

minBoundaryi ← min(minBoundaryi, act(i, x))
maxBoundaryi ← max(maxBoundaryi, act(i, x))

if ord(i, c+ 1) does not exist then Fi ←∞
if ord(i, c) == 0 then Vi ←∞
minDisti ← min(Fi · |minBoundaryi − act(i, s)|, Vi · |maxBoundaryi − act(i, s)|)

t← dist(minDist) ▷Calculate the threshold t
if |top| == k and getMaxDist(top) ≤ t then break ▷Termination condition

inputRun← inputRun ∪ toRunUnion
c← c+ 1

activations for all inputs.

3.2.5 Instance Optimality of NTA

In this section, we investigate the instance optimality of NTA, which corresponds to the

optimality in every instance, rather than just the worst or average case. Fagin’s paper [92]

shows that CTA is instance optimal for finding the top-k items over all algorithms (excluding
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those that make very lucky guesses) and over all legal databases. We build on that proof to

show the same for NTA.

Following the definitions in [92], let A be a set of algorithms that answer our target

queries, and D be a set of combinations of datasets and DNN models that are legal inputs.

Let cost(A,D) be the number of inputs in the dataset of D accessed by A ∈ A when running

A on D ∈ D. An algorithm B is instance optimal over A and D if B ∈ A and if for every

A ∈ A and every D ∈ D,

cost(B,D) = O(cost(A,D)) (3.5)

We show the following theorem.

Theorem 1. NTA is instance optimal for finding the top-k inputs over all algorithms

(excluding those that make very lucky guesses) and over all legal combinations of datasets

and DNN models.

The proof follows similarly to that of Theorem 6.1 in [92]. We bound the maximal number

of inputs accessed by NTA with an additive constant over CTA’s maximal sequential access

depth.

Proof. For any D∈D, assume that we already have the relation of sorted absolute differences

(denoted with AbsDiff) between the activations of all inputs and the activation of the target

input. Assume that CTA halts at depth di for each neuron gi when running on AbsDiff, i.e.,

di is the number of inputs seen via sequential accesses for neuron gi. As in [92], it suffices to

bound the maximal number of inputs accessed by NTA for any gi∈G. Let d = maxi di. For

the duration of this proof, let xj denote the input at depth j in AbsDiff for a neuron gi that

reaches depth d when running CTA. Let R be the partition size in NPI. We will show that

NTA will have accessed xj(∀1≤j≤d) and terminate in at most d+ 2R accesses.

Recall that we denote a single partition for neuron gi with p∈Pi. p is the partition

identifier, PID, and sPID(i) is the PID of the target input s for neuron gi. In NPI, for gi∈G,

we say that a partition p∈Pi is an above partition if p < sPID(i); a partition p∈Pi is an under
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partition if p ≥ sPID(i). We say that an input is an above input if it belongs to an above

partition; an input is an under input if it belongs to an under partition. As in Equation (3.2),

an above partition uses the input whose activation is the lower bound of the partition as its

representative; an under partition uses the input whose activation is the upper bound as its

representative (the only exception is that the partition p = sPID(i) uses the target input, s,

as its representative).

Without loss of generality, assume that xd is an above input. Let a be the greatest j<d

where xj is an under input. Let b be the least j>d where xj is an under input. When NTA

has accessed xj(∀1≤j≤d) and confirmed that xb is more distant from s than xd, it knows that

it has the correct top-k results and can then terminate. This is equivalent to the termination

condition in Section 3.2.4.

Case 1: When xa is accessed by NTA after xd, we will show at most R above inputs,

xj(j>d), are accessed before xa. Assume towards contradiction that more than R above

inputs xj(j>d) are accessed before xa. There would be a representative of an above partition,

xd′ where d′ ≥ d. Let xa′ be the representative of the partition containing xa. Thus,

a′ ≤ a < d ≤ d′ =⇒ a′ < d′. This is a contradiction because the above partition with xd′ as

its representative was chosen to be accessed earlier than the under partition with xa′ as its

representative, which implies d′ ≤ a′.

Since under partitions are accessed in order w.r.t. xa, the number of under inputs,

xj(j>d), accessed by NTA is also at most R, i.e., the under inputs co-located on the partition

containing xa.

Note that if xa and xb belong to the same partition, NTA will terminate after this partition.

If xa and xb belong to different partitions, then xb is the representative of its partition. After

confirming that xb is more distant from the target input s than xd, NTA knows that it

does not need to access any further partitions (including the partition containing xb) and

terminates. In either scenario, the number of above xj(j>d) accessed by NTA is at most R,

and the number of under xj(j>d) accessed is also at most R. Hence, the total number of

accesses made by NTA is at most d+ 2R.
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Case 2: When xb is accessed by NTA before xd, there can be at most R under inputs,

xj(j>d), that are accessed before xd. Furthermore, the number of above inputs, xj(j>d),

accessed is at most R, i.e., the above inputs co-located on the partition containing xd Hence,

the total number of accesses made by NTA is at most d+ 2R. The proof follows similarly to

Case 1.

Case 3: When xa, xb are accessed by NTA in order w.r.t. xd, xb must be the representative

for its partition. After NTA processes the partition containing xd, it will recognize that xb

is more distant than xd and terminate. Thus no under xj(j>d) will be explicitly accessed.

The above partitions are accessed in order w.r.t. xd, so the number of above inputs, xj(j>d),

accessed is at most R, i.e., the inputs co-located on the partition containing xd. Hence, the

total number of accesses made by NTA is at most d+R.

Since the three cases above exhaust all possibilities, this proves that for each neuron in G,

NTA will have accessed xj(∀1≤j≤d) and terminate in at most d+ 2R accesses.

3.2.6 Incremental Indexing

As shown in Section 3.3, the DeepEverest approach described so far achieves excellent

query execution times with low storage overhead. This approach, however, incurs a potentially

high preprocessing cost, especially for large datasets and models. Before executing any query,

DeepEverest needs to compute the activations for all neurons and all inputs by running

DNN inference. It then needs to construct the indexes for all layers and persist them to disk.

To address this challenge, we propose building the indexes incrementally as queries

execute so that preprocessing is performed only for the layers users query. With this

approach, DeepEverest performs no preprocessing ahead of time. When the user submits

a query, if the indexes of the queried layer are available on disk, DeepEverest proceeds as

described in Sections 3.2.4 and 3.2.7; otherwise, DeepEverest computes the activations

of the queried layer by running DNN inference on all inputs. While doing so, it computes

the query answer and returns it to the user. DeepEverest then constructs the indexes for
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the layer and persists them to disk. Note that DNN inference is performed starting from

the first layer instead of a previously queried layer each time DeepEverest constructs the

indexes for a layer because only the indexes of the queried layers are stored on disk. With

this approach, the costs of index computation and persistence for each layer are incurred

once the first time that layer is queried, and only if that layer is queried.

In Section 3.3.3, we show that DeepEverest with this incremental approach significantly

outperforms other methods on multi-query workloads. While DeepEverest must do extra

preprocessing to build and store its indexes compared with caching the activations directly, it

accelerates significantly more queries because it is able to store the indexes for significantly

more layers given a storage budget.

3.2.7 Optimizations

In this section, we present several important optimizations that further improve the per-

formance of DeepEverest. The first optimization, described in Section 3.2.7, accelerates

two common types of top-k queries. The second optimization, described in Section 3.2.7,

automatically selects DeepEverest’s configuration. The third optimization, described in

Section 3.2.7, accelerates sequences of related queries, as may occur during data exploration.

Maximum Activation Index (MAI)

For a given target input and a layer in a DNN, the maximally activated neurons are those

neurons in the layer for which the activation values for the target input are the highest. DNN

interpretation often involves examining such maximally activated neurons [249, 284, 294, 53]

because they respond to the input the most and have the greatest impact on the DNN output.

A common set of top-k most-similar queries ask to find the top-k similar inputs to a target

input based on a neuron group consisting of these maximally activated neurons.

To accelerate these top-k most-similar queries that target maximally activated neurons

as well as top-k highest queries, we introduce a straightforward yet effective optimization.

The idea is for DeepEverest to store, for each neuron, a fraction of the highest activation
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Input\Neuron R1 R2 R3

x0 2.0 2.0 1.1

x1 2.0 1.8 1.1

x2 1.5 1.7 1.6

x3 1.8 1.6 1.8

x4 1.2 1.2 1.5

Input R1 PID

x0 2.0 0

x1 2.0 0

x3 1.8 0

Input R2 PID

x0 2.0 0

x1 1.8 0

x2 1.7 0

Input R3 PID

x3 1.8 0

x2 1.6 0

x4 1.5 0

Input newly computed x1

dist 0.2

(x, dist(s, x, G)) (x1, 0.2)

top

Neuron R1 R2

minDist 0.0 0.2

minDist
Neuron R1 R2

(min, max) (2.0, 2.0) (1.8, 2.0)

minBoundary, maxBoundary

Threshold: t = 0.0 + 0.2 = 0.2
Neuron R1 R2

H ∞ ∞

H

dist(s, x, G)

MAI
Sort & 
Partition &
Store

Terminate: return (x1, 0.2)

R1 x1 x3 R2 x1 x2

Sort based on distances to x0
toRun = {x1}

Artifact

Figure 3.4: An example of constructing MAI (ratio=0.6) and query execution for
topk(x0, {R1, R2, R3}, 1, l1)-distance (batchSize=1). Despite x0 only being in MAI for R1
and R2, DeepEverest leverages MAI to answer the query after only running DNN inference
on x0 and x1.

values together with the corresponding inputIDs. We call this data structure the Maximum

Activation Index (MAI), and denote this fraction of (activation, inputID) pairs for a

given neuronID with MAI(neuronID). This fraction automatically becomes each neuron’s

0-th partition. We denote the fraction of the inputs stored in MAI with ratio, which is a

configurable parameter and discussed further in Section 3.2.7.

DeepEverest utilizes MAI during query execution to further reduce the number of

inputs on which DNN inference is performed, if possible. DeepEverest now has more

detailed knowledge of which inputs are most similar to the target input, rather than just

the high-level knowledge that the inputs are in the same partition. We observe empirically

that the activation values of the maximally activated neurons for an input are often likely to

be in the top activations stored in MAI, and thus MAI is effective in improving the query

time. DeepEverest modifies query execution described in Section 3.2.4 of partition 0 to
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incorporate this information as follows: it first finds the neurons for which the target input is

in MAI. For these neurons, DeepEverest sorts the other inputs in the 0-th partition by

their distances to the target input s. Rather than performing DNN inference on all inputs in

MAI for each neuron, DeepEverest builds a global toRun set by adding the most similar

inputs from all of these neurons until the batch size is reached. Step 4(c) in Section 3.2.4 is

modified to computeminDisti as min {|minBoundaryi−acti,s|, Hi · |maxBoundaryi−acti,s|},

where Hi is an indicator function that indicates whether NTA has seen the input with the

highest activation in MAI(i). Hi=∞ when highest activation of neuron gi has been seen;

Hi=1 otherwise. The neurons gi for which s is not in MAI(i) contribute 0 to the threshold

calculation. Figure 3.4 illustrates an example.

Automatic Configuration Selection

Given a storage budget, DeepEverest must allocate it between NPI and MAI. It uses a

heuristic algorithm to achieve this. A greater nPartitions leads to smaller partitions, which

is key to generally better performance (see Section 3.3.4) on queries that target any kind of

neuron group (see Section 3.3.1), while a larger ratio accelerates only the two types of queries

mentioned in Section 3.2.7. Hence, DeepEverest first picks a value for nPartitions and

then sets the value of ratio.

Intuitively when partitions are smaller, DNN inference is performed on fewer inputs not

in the top-k because DeepEverest processes inputs partition-by-partition. However, if the

partitions are smaller than the optimal batch size, DeepEverest will not leverage the full

GPU parallelism.

Given a storage budget, budget (in bytes), and a batch size, batchSize, DeepEverest sets

nPartitions to be the maximum power of two (to utilize all bits) that satisfies nPartitions ≤

nInputs/batchSize and cost(nPartitions) < budget. cost(nPartitions) is the bytes con-

sumed by storing NPI and is calculated as nNeurons · nInputs · log2(nPartitions)/8.

batchSize is set to the value that achieves the highest throughput for the DNN. Given

the remaining storage budget, DeepEverest sets ratio to be the maximum value that
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satisfies cost(ratio) ≤ budget−cost(nPartitions), where cost(ratio) is the bytes consumed by

storing MAI and calculated as ratio·nInputs·nNeurons·4·2, since activation and inputID

are 4 bytes each. When there is no remaining storage budget after selecting nPartitions,

DeepEverest sets ratio to 0.

Inter-Query Acceleration (IQA)

Inter-Query Acceleration (IQA) is an optimization technique to accelerate sequences of related

queries, as may occur during DNN interpretation. As an example, imagine that a user finds

a misclassified image. The user may want to first see the maximally activated neurons in

a layer for the image and then find images with similar maximally activated neurons. The

user may then decide to change how many neurons they are looking at, e.g., go from the

top-3 neurons to the top-4 neurons. These exploration queries can be related in different

ways. For example, the neuron group of a query could overlap with a subset of the neurons

from recent queries, or the user-specified sample input in a query could be one of the top-k

results of recent queries. Queries that overlap in neurons present an opportunity for further

optimization as activation values can be reused for related queries.

With IQA, DeepEverest leverages an in-memory cache that contains recently used

activation values to reduce the number of inputs that it must run DNN inference on at

query time. Note that this in-memory cache is different from the disk caches described

in Section 3.2.1. During query execution, DeepEverest inserts the activation values of

each input processed by NTA into the cache. Instead of caching only the activation values

for the neuron group being queried, it caches the activations for all neurons in the queried

layer. This enables DeepEverest to utilize the cache for future related queries that target

a different group of neurons in the same layer. DeepEverest adopts a most recently

used (MRU) replacement policy for the in-memory cache. This is because DeepEverest

processes partitions in order from most similar to the target input to least similar, and it

seeks to prioritize keeping the activations from the most similar partitions in the cache. We

show in Section 3.3.6 that given a small in-memory cache budget, DeepEverest with IQA
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(a) FireMax, CIFAR10-VGG16 (b) SimTop, CIFAR10-VGG16 (c) SimHigh, CIFAR10-VGG16

(d) FireMax, ImageNet-ResNet50 (e) SimTop, ImageNet-ResNet50 (f) SimHigh, ImageNet-ResNet50

Figure 3.5: End-to-end individual query times and storage sizes on CIFAR10-VGG16 and
ImageNet-ResNet50. nPartitions and ratio of DeepEverest are selected by our heuristic
algorithm given a storage budget of 20% of full materialization.

achieves up to 8× faster query times than DeepEverest without it.

3.3 Evaluation

DeepEverest is implemented in Python, using C++ to build the indexes. We evaluate it

against the baselines described in Section 3.2.1.

3.3.1 Evaluation Setup

Datasets and models. We evaluate DeepEverest on two sets of well-known datasets

and models. The first, called CIFAR10-VGG16 , uses as inputs 10,000 images from the test
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set of CIFAR10 [160], and uses a VGG16 network [245, 173]. The second, called ImageNet-

ResNet50 , uses as inputs 10,000 images from the validation set of ImageNet [233], and uses

a ResNet50 model [119]. These two sets of models and datasets complement each other in

terms of model and input size and DNN inference cost. In all experiments, we preload the

entire input dataset into memory. We set batchSize for each model as the value that achieves

the highest inference throughput (128 for CIFAR10-VGG16 ; 64 for ImageNet-ResNet50 ).

Query generation. To generate queries, we consider 3 types of layers: early, mid, and late.

For CIFAR10-VGG16 , these correspond to activation layers 2, 7, and 13. For ImageNet-

ResNet50 , we use activation layers 2, 25, and 48. Given an input and a layer, we consider

the following types of neuron groups: (a) Top: the maximally activated neurons for the

given input in the layer; and (b) RandHigh: neurons randomly picked from the top half of

non-zero neurons for the given input. We further consider small, medium, and large neuron

groups consisting of 1, 3, and 10 neurons. Finally, based on the neuron groups, we use the

following query types: (a) FireMax : top-k highest query; (b) SimTop: top-k most-similar

query based on a Top neuron group; and (c) SimHigh: top-k most-similar query based on a

RandHigh neuron group. We randomly select inputs from each dataset to generate SimTop

and SimHigh queries.

In all experiments, we set k=20, which is a reasonable number of results for a user to

inspect for a query. With a smaller k, we expect DeepEverest to achieve larger speedups

because it will process fewer inputs and therefore return the results faster, while the query

times of baselines will remain similar since they still need to recompute or load all the

activations and maintain the query results. With a larger k, the overall speedups could

degrade, but DeepEverest can incrementally return the top-k query results, as discussed

in Section 3.4. Therefore, the perceived query time is still significantly improved. We use

l2-distance as the distance function. All numbers reported are median values of five queries

on random inputs for each query configuration (e.g., query type: FireMax , neuron group size:

3, layer: late).

Machine configuration. All experiments are run on an AWS EC2 p2.xlarge instance, which
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(a) Workload 1, CIFAR10-VGG16 (b) Workload 2, CIFAR10-VGG16 (c) Workload 3, CIFAR10-VGG16

(d) Workload 1, ImageNet-ResNet50 (e) Workload 2, ImageNet-ResNet50 (f) Workload 3, ImageNet-ResNet50

Figure 3.6: Cumulative total time (preprocessing time plus query execution time) for various
multi-query workloads.

has an Intel Xeon E5-2686 v4 CPU running at 2.3 GHz, with 61 GB of RAM, an NVIDIA

K80 GPU with 12 GB of GPU memory, and EBS gp3 volumes for disk storage.

3.3.2 Fundamental Space-Time Tradeoff

We first evaluate the fundamental tradeoff that DeepEverest achieves in terms of storage

space and query execution time for individual queries. In this experiment, the only opti-

mization DeepEverest uses is MAI described in Section 3.2.7. We first precompute and

store the indexes for all layers before executing the benchmark queries. DeepEverest has a

storage budget of 20% of PreprocessAll, and selects nPartitions and ratio using the algorithm

described in Section 3.2.7. For CIFAR10-VGG16 , nPartitions = 64, ratio = 0.0046; for

ImageNet-ResNet50 , nPartitions = 64, ratio = 0.0074. We compare DeepEverest against
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PreprocessAll and ReprocessAll. Figure 3.5 shows the results.

As the figures show, PreprocessAll has the highest storage cost (37.8 GB for CIFAR10-

VGG16 , and 1.35 TB for ImageNet-ResNet50 ) since it stores all activations for every input.

However, scanning the precomputed activation values generally leads to the fastest query

times. The query times of PreprocessAll are slower for the early layer of CIFAR10-VGG16

because it has a large number of neurons, and thus it takes longer to load all the activations.

ReprocessAll has the lowest storage cost since it does not precompute or store anything ahead

of time. Its query times are slow because of the DNN inference on the entire dataset at query

time.

DeepEverest achieves the best of both worlds: low storage overhead and fast query

times. For CIFAR10-VGG16 , compared with ReprocessAll DeepEverest is 1.65× to 31.1×

faster for FireMax , 1.22× to 50.8× faster for SimTop, and up to 31.5× faster for SimHigh.

For ImageNet-ResNet50 , compared with ReprocessAll, DeepEverest is 2.67× to 62.8×

faster for FireMax , 1.65× to 63.5× faster for SimTop, and 1.35× to 63.1× faster for SimHigh.

Compared to PreprocessAll for both CIFAR10-VGG16 and ImageNet-ResNet50 , Deep-

Everest achieves comparable and sometimes even faster query times for queries that target

small and medium-size neuron groups despite using only 20% of PreprocessAll ’s storage

overhead. For queries that target large neuron groups, DeepEverest’s query times are

slower. We observe this phenomenon again in Figure 3.9 (discussed in Section 3.3.4). Due to

the curse of dimensionality, there is little difference in the distances between different pairs

of inputs. As a result, DeepEverest is not able to reduce the number of inputs run by

the DNN at query time as it does for small and medium neuron groups. Table 3.3 shows

the number of inputs run by the DNN at query time to compute the activation values for

SimHigh queries. We find that the number of inputs run by the DNN at query time for

queries on larger neuron groups is higher than that of queries on smaller neuron groups.
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3.3.3 Multi-Query Workloads

In this section, we evaluate DeepEverest on multi-query workloads using incremental

indexing described in Section 3.2.6 that avoids start-up overhead. We construct various query

workloads to represent possible DNN interpretation patterns and compare DeepEverest

against other on-disk caching techniques. All workloads consist of 1,000 the most general

SimHigh queries that target neuron groups of medium size. The first query of each workload

targets a RandHigh neuron group from a randomly selected layer. Each later query has

probabilities psame of querying the same layer as the previous query, pprev to query one of the

previously queried layers (excluding the layer queried by the previous query), and pnew to query

a layer that has not been queried yet. Workload 1 sets these to psame=0.5, pprev=0.3, pnew=0.2.

Workload 2 sets these to psame=0.5, pprev=0.4, pnew=0.1. Workloads 1 and 2 are intended to

simulate the exploration process of users that are likely to initially target layers they are

interested in, and gradually explore more layers. Additionally, we construct Workload 3 in

which queries are independent of each other; each layer is targeted uniformly at random by

each query. This is not a realistic interpretation pattern but is meant to show the worst-case

workload for DeepEverest.

We measure the cumulative total time, which includes the time for both preprocessing

and query execution, and cumulative storage for each method. DeepEverest is given a

storage budget of 20% of full materialization, and nPartitions and ratio are selected by our

heuristic algorithm. LRU Cache and Priority Cache have the same 20% storage budget.

The time to initially compute and store the data on disk is included with the 0-th query

for PreprocessAll and Priority Cache. The results for cumulative total time are shown in

Figure 3.6. We report the storage results in the text.

DeepEverest consistently performs the best for Workloads 1 and 2 using less than

20% of the storage of full materialization. We observe that after some number of queries,

the cumulative total time of DeepEverest grows more slowly. For CIFAR10-VGG16 , it

plateaus after around 300 queries for Workload 1 and around 550 queries for Workload 2.
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This indicates that DeepEverest has built and stored NPI and MAI for all layers in the

DNN. All later queries are much faster because they benefit from these indexes and NTA.

For ImageNet-ResNet50 , DeepEverest completes building and storing the indexes for all

layers after around 780 queries for Workload 1 and never completes for Workload 2, as we

observe that DeepEverest’s storage consumption is only 11.3% of full materialization after

1,000 queries. DeepEverest finishes building its indexes after fewer queries in Workload 1

than in Workload 2 since Workload 1 has a higher probability of querying new layers.

While DeepEverest has the fastest query times, its storage also grows more slowly

than the baseline approaches (except for ReprocessAll which does not have any storage

overhead). For both datasets and models, PreprocessAll uses full storage after its preprocessing

step. Similarly, Priority Cache consumes its 20% storage budget after preprocessing. LRU

Cache consumes its storage budget after around 50 to 200 queries. As discussed above,

DeepEverest finishes building the indexes for all layers and consumes its storage budget

after around 300 to 500 queries on CIFAR10-VGG16 , and for ImageNet-ResNet50 it fills its

storage after 780 queries for Workload 1 and never does so for Workload 2.

For Workload 3, which is unlikely an interpretation pattern, DeepEverest is slightly

worse than the best performing method for the first 200 to 300 queries on both datasets and

models because during that time DeepEverest builds indexes for many new layers that

have not been queried before. However, DeepEverest performs the best after 400 queries

because more queries target previously seen layers and benefit from its indexes and NTA.

We further observe that users typically pause between queries. DeepEverest can

use that time to compute and persist its indexes to disk, which would yield even better

user-perceived query times.

3.3.4 DeepEverest’s Configuration Selection

We now study the effectiveness of NPI and MAI, and the impact of DeepEverest’s

configurable parameters, as well as how DeepEverest performs using the configuration

selection heuristic described in Section 3.2.7 with different storage budgets.
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(a) CIFAR10-VGG16 (b) ImageNet-ResNet50

Figure 3.7: Query times of SimHigh queries when varying nPartitions. Note the log scale
on the x-axis.

(a) CIFAR10-VGG16 (b) ImageNet-ResNet50

Figure 3.8: Speedups of query times (layer: late) against ReprocessAll when varying ratio
with nPartitions set to 16.

Impact of Number of Partitions. We first examine how the number of partitions,

nPartitions, affects the query times. We measure the query times of DeepEverest on

SimHigh queries after building NPI with varying nPartitions. MAI is disabled for this

experiment. The results are shown in Figure 3.7. We also measure the number of inputs on

which DeepEverest performs DNN inference during query processing. Table 3.3 shows the
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results for CIFAR10-VGG16. Similar trends are observed for ImageNet-ResNet50.

The query time initially decreases as nPartitions increases. This is because when

partitions are larger, inputs that do not contribute to the result end up being processed by

DeepEverest. Hence, as partitions get smaller, the number of inputs run by the DNN at

query time decreases. Then, after nPartitions increases past a certain value (64 for CIFAR10-

VGG16 ; 128 for ImageNet-ResNet50 ), the query time no longer decreases despite the number

of inputs run by the DNN at query time continuing to decrease. Recall that NTA runs

inference on all inputs in a partition as it processes that partition. When nPartitions is so

large that the partition size is below the optimal batchSize for DNN inference, the parallelism

of the GPU is not fully utilized, which causes some queries to slow down. Therefore, a good

value of nPartitions creates partitions whose sizes are similar to the optimal batchSize.

Effectiveness of MAI. This experiment evaluates the effectiveness of MAI. We measure the

speedups of query times compared with ReprocessAll when varying ratio, which determines

the fraction of inputs with activation values materialized in MAI. Recall that when MAI

is non-empty, it becomes the 0-th partition. For this experiment, we set nPartitions = 16,

which is a setting that performs well (see Figure 3.7). As discussed in Section 3.2.7, MAI

is designed to accelerate FireMax and SimTop queries. We measure the speedups of such

queries on neuron groups of different sizes.

Figure 3.8 shows the results. Note that when ratio=0, DeepEverest runs without MAI.

The speedups of query times are generally much higher when ratio is any non-zero value.

This is because MAI enables DeepEverest to return the query results after processing

a subset of the inputs from MAI (partition 0), rather than processing the entire partition.

We also observe that the speedups of query times plateau or drop as ratio further increases.

This is because loading MAI from disk takes longer as ratio increases. When a small index

provides enough information for DeepEverest to find the top-k results after processing

only some inputs from MAI, increasing ratio degrades the speedups; the additional inputs

in MAI do not improve the query times, and loading a larger index takes longer. The best

value of ratio in practice depends on the queries and the distributions of the activations of



61

Table 3.3: Number of inputs run by the DNN at query time for SimHigh queries on CIFAR10-
VGG16.

Layer-Neuron
group size

Number of partitions

4 8 16 32 64 128 256

mid-1 3334 1429 667 323 159 79 40
mid-3 5462 2902 1441 736 727 390 390
mid-10 8941 6869 4339 4215 3515 3492 3316
late-1 3334 1429 667 323 159 79 40
late-3 5968 2372 1106 618 618 388 391
late-10 9008 5565 2870 2745 2227 1956 1919

the queried neuron group. Empirically, we observe that a small value of ratio (e.g., 0.05) is

good for FireMax and SimTop queries on the two datasets and models.

Impact of Storage Budget. In previous sections, we examined the performance of

DeepEverest with a storage budget of 20% of full materialization. Here we examine how

well DeepEverest performs when the configuration selection algorithm has different storage

budgets. We measure the speedups of query times compared with ReprocessAll for SimTop

and SimHigh queries that target medium and large neuron groups, as shown in Figure 3.9.

We observe that empirically DeepEverest delivers high speedups across different storage

budgets, which also suggests that our configuration selection algorithm is robust. With a

larger storage budget, DeepEverest performs better. We also observe that the speedups

of queries on medium neuron groups are generally greater than the speedups for queries on

large neuron groups due to the curse of dimensionality.

3.3.5 Preprocessing Costs

This experiment evaluates the costs of preprocessing in an extreme case where the user queries

all layers in the DNN. Note that with incremental indexing, the costs of index computation

and persistence for each layer are incurred once only if that layer is queried. In this experiment,

DeepEverest is given a storage budget of 20% of full materialization and preprocesses all
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(a) CIFAR10-VGG16 (b) ImageNet-ResNet50

Figure 3.9: Speedups against ReprocessAll by DeepEverest when given different storage
budgets.

layers for each dataset and model from the first layer to the last layer. Convolutional layers,

activation layers, and batch normalization layers are considered separate layers. We measure

the cumulative times for each component in preprocessing: DNN inference, data persistence

(for PreprocessAll, persisting the activations to disk; for DeepEverest, persisting NPI and

MAI to disk), and index computation. We force-write the data to disk when measuring

the time for data persistence. Figure 3.10 shows the results. DeepEverest has similar

preprocessing times compared with PreprocessAll. The time for building NPI and MAI and

persisting them to disk is similar to the time for PreprocessAll to persist the activations to disk.

Note that DNN inference takes longer for late layers than for early layers. We also observe

that data persistence and index computation for early layers takes longer than for late layers,

since the sizes of early layers are usually greater than that of late layers. Considering these

results along with the results shown in Section 3.3.2, DeepEverest achieves comparable

and sometimes better query times than PreprocessAll, with only 20% of its storage overhead

and similar preprocessing times.
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3.3.6 Effectiveness of IQA

Finally, we evaluate the effectiveness of Inter-Query Acceleration (IQA) for sequences of

related queries. We randomly select five inputs and construct two sequences of related queries

for each input on various layers. Both sequences consist of 1,000 SimHigh queries. The first

query of each sequence targets a RandHigh neuron group containing nsize neurons. Each later

query randomly replaces nreplace neurons in the neuron group of the previous query by nreplace

randomly selected RandHigh neurons. Sequence 1 sets nsize=5 and nreplace=1. Sequence 2

sets nsize=10 and nreplace=2.

We measure the speedups for query times of DeepEverest with IQA against Deep-

Everest without IQA for each query. Figure 3.11 shows the median of the speedups for

each query on CIFAR10-VGG16 given an in-memory cache budget of 1 GB for IQA, with

nPartitions=16 and ratio=0 set for DeepEverest. We observe that even with this small

budget, IQA consistently improves DeepEverest’s query times across different layers. Not

shown in this chapter, we also experiment with different nPartitions and ratio and different

cache budgets. We find that IQA always consistently speeds up related queries and larger

budgets generally lead to larger speedups. In Figure 3.11, the speedups for the first query are

around 1× since the in-memory cache is initially empty. For later queries when the cache is

populated, for Sequence 1, DeepEverest with IQA achieves speedups of 2.65× to 8.73× for

the late layer, 3.97× to 8.08× for the mid layer, and 1.53× to 3.38× for the early layer. For

Sequence 2, DeepEverest with IQA achieves speedups of 4.00× to 8.06× for the late layer,

4.29× to 7.86× for the mid layer, and 1.48× to 1.82× for the early layer. The speedups for

the early layer are smaller because this layer is larger, and hence the in-memory cache can

hold fewer inputs’ activations of the full layer. We observe larger speedups for the early layer

with larger cache budgets.

3.4 Discussion

This section discusses some possible optimizations and extensions for DeepEverest.
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(a) CIFAR10-VGG16 (b) ImageNet-ResNet50

Figure 3.10: Cumulative preprocessing times from the first layer to the last layer for Prepro-
cessAll and DeepEverest.

(a) Sequence 1 (b) Sequence 2

Figure 3.11: Speedups of query times by DeepEverest with IQA (1 GB cache budget) against
DeepEverest without IQA.

Incrementally Returning Query Results. NTA runs until it has found k inputs whose

distances to the sample s are at most the threshold value, t. However, NTA may be certain

that some inputs are part of the top-k set before it has found the complete set. For queries
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where k > 1, after each round of the algorithm, DeepEverest returns inputs in Y ⊆ U ,

where for all y ∈ Y , dist(s, y,G) ≤ t, and continues running to find the rest of the k − |Y |

results. DeepEverest’s optimizations enable it to incrementally return the top-k results

quickly, and therefore reduces the time required to return the first part of the answer to the

user.

Approximation. Modifying DeepEverest to give approximate results is straightforward.

Following the definition of the θ-approximation in Fagin’s paper [92], a θ-approximation (let

0 < θ < 1 be given) to the top-k answers is a collection of k inputs, U , (and their distances to

the sample input) such that for each y ∈ U and each z ∈ D\U , θ∗dist(s, y,G) ≤ dist(s, z,G).

Let t be the threshold value from Equation (3.3). DeepEverest can find a θ-approximation

to the top-k answers by modifying the termination condition in Equation (3.4) to be,

max
x∈top
{dist(s, x,G)} ≤ t/θ (3.6)

Early Stopping. DeepEverest can be further modified into an interactive process in

which it can show the user the current top-k results with a guarantee about the degree of

approximation to the correct top-k results. Based on this guarantee, the user can decide

whether they would like to stop the process at any time. Let b be the largest distance to

the sample input from the current top-k results, let t be the current threshold value, and let

θ = t/b. If the algorithm is stopped early, we have 0 < θ < 1 because b > t. Therefore, the

current top-k results is then a θ-approximation to the correct top-k answers. Thus, the user

can be shown the current top-k results and the number θ, with a guarantee that they are

being shown a θ-approximation.

3.5 Summary

In this chapter, we presented DeepEverest, a system that accelerates top-k queries for

DNN interpretation. DeepEverest, with various optimizations, reduces the number of

activations computed at query time with low storage overhead, while guaranteeing correct

query results. With less than 20% of the storage of full materialization, DeepEverest
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accelerates individual queries by up to 63.5× and consistently outperforms other methods

over various multi-query workloads.
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Chapter 4

MASKSEARCH: QUERYING IMAGE MASKS AT SCALE

Many machine learning (ML) tasks over image databases commonly generate masks that

annotate individual pixels in images. For instance, model explanation techniques [254, 248,

241, 292, 246] generate saliency maps to highlight the significance of individual pixels to a

model’s output. In image segmentation tasks [118, 151, 229], masks denote the probability of

pixels being associated with a specific class or an instance. Depth estimation models [59, 208]

yield masks reflecting the depth of each pixel, while human pose estimation models [71, 109]

provide masks indicating the probability of pixels corresponding to body joints. Figure 1.4

shows some examples.

Exploring the properties of these masks unlocks a plethora of applications. For instance,

in the context of model explanation, examining saliency maps is the most common approach

to understanding whether a model is relying on spurious correlations in the input data, i.e.,

signals that deviate from domain knowledge [201, 215, 61, 274, 89, 192]. Other applications

based on the properties of masks include identifying maliciously attacked examples using

saliency maps [278, 270, 285], out-of-distribution detection also using saliency maps [124],

monitoring model errors [31, 143, 16] using segmentation masks, traffic monitoring and retail

analytics using segmentation masks [84, 83], and others.

The wide-ranging applications underscore an emerging necessity for AI practitioners: the

capability to efficiently query and retrieve examples from image databases together with their

masks, based on properties of the latter [215, 82, 151]. Today, AI practitioners lack a system

that would support this task efficiently and at scale.

Consider the following two scenarios inspired by the literature:

Scenario 1 (inspired by [278]): Bob is an engineer responsible for monitoring the
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*Red (or blue) pixels indicates high (or low) importance for model prediction.

Label: bird, predicted: potLabel & predicted : bird Label: pot, predicted: fence

b) maliciously modified 
images, good model

a) unmodified 
images,  good model

c) unmodified images, 
low-quality model

Figure 4.1: Example image masks: ImageNet [90] images overlaid with saliency maps. Saliency
maps in columns b) and c) reveal that the models rely on irrelevant pixels to make predictions.
Retrieving more examples with similar mask properties helps to better investigate the model’s
behavior.

performance of an image classification model. Recently, he notices a significant drop in

the model’s accuracy. To investigate, Bob examines the saliency maps for the misclassified

images and finds that the high-value pixels are not concentrated on the foreground objects,

but rather diffused across irrelevant background regions (see Figure 4.1). Suspecting these

misclassifications may be due to malicious modifications that mislead the model to focus on

irrelevant pixels, Bob wishes to identify and retrieve other masks (with the corresponding

images) where high-value pixels are dispersed. This process often requires multiple iterations

of querying and analyzing the returned examples, each time adjusting the regions of interest

(where the high-value pixels are expected to be) and pixel value ranges (the range of high-value

pixels) specified in the queries. Through this process, Bob could better understand the extent

of the malicious modifications and work towards improving the model’s resilience to such

attacks.

Scenario 2 (inspired by [89], detailed in Example 1.2.1): Alice, a scientist, developed

a model to detect COVID-19 from chest X-rays, achieving high accuracy on training and

validation sets. Despite this, the model often contradicts PCR test diagnoses in local hospitals.
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Investigating this discrepancy, Alice found that the model’s saliency maps focused on peripheral

markers, i.e., markers on the edges of the X-rays that do not contain any medical information,

rather than the lungs, indicating it learned confounding factors. To identify other examples

where the model relies on irrelevant pixels, Alice iteratively queries her dataset for masks with

high-value pixels in the peripheral regions.

As the above examples illustrate, querying databases of masks is important in ML

applications. Unfortunately, there is a lack of system support to efficiently execute these

queries [123]. According to [215], to identify examples for which the model relies on spurious

correlations, researchers have to manually examine the explanation maps for each image.

This tedious approach is clearly untenable and calls for a system that efficiently supports

mask-based queries.

In light of existing challenges, we propose MaskSearch, a system that efficiently retrieves

examples based on mask properties. To build MaskSearch, we first formalize a novel,

and broadly applicable, class of queries that retrieve images (and their masks) from image

databases based on the properties of masks computed over those images. At the core of

these queries are predicates on image masks that apply filters and aggregations (i.e., count of

pixels) on the values of pixels within regions of interest (ROIs). We further extend the queries

to support aggregations across masks and top-k computations to enhance the versatility of

the supported queries. Aggregations across masks serve as a powerful tool for comparing

trends of different masks, e.g., studying the difference between model saliency maps and

human attention maps [82]. Top-k computations are also widely used. For example, Alice

might be interested in finding the top-k X-rays whose saliency maps have the least number

of high-value pixels in the lung regions.

Efficiently executing the formulated queries is challenging: The database of masks is

too large to fit in memory; loading all masks from disk is slow and dominates the query

execution time; compressing masks does not help due to the overhead of decompression.

Existing methods do not support these queries efficiently. Using either NumPy or PostgreSQL

to load and process the masks, a query that filters masks based on the number of pixels
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within an ROI and a pixel value range takes more than 30 minutes to complete on ImageNet

(Figure 4.6). Existing multi-dimensional indexing techniques also do not provide better

execution times because masks are dense arrays. Array databases such as SciDB [67] and

TileDB [205], though designed to process multi-dimensional dense arrays, are not optimized

for efficiently searching through large collections of small arrays, as required in our target

queries (Figure 4.6). While masks can be flattened as vectors and stored in vector databases,

MaskSearch differs significantly because it targets a fundamentally different type of queries.

A detailed discussion is provided in Section 4.1.2.

MaskSearch accelerates the aforementioned queries without any loss in query accuracy by

introducing a new type of index and an efficient filter-verification query execution framework.

Both techniques work in tandem to reduce the number of masks that must be loaded from

disk during query execution while guaranteeing the correctness of the query result. The

indexing technique, which we call the Cumulative Histogram Index (CHI), provides bounds

on the pixel counts within an ROI and a pixel value range in a mask. It is designed to work

with arbitrary ROIs (both mask-specific and constant) and pixel value ranges specified by the

user at query time. These bounds are used during query execution when deciding whether a

mask should be loaded from disk and processed while guaranteeing the correctness of the

query result.

MaskSearch’s query execution employs the idea of pre-filtering. Using pre-filtering

techniques to avoid expensive computation or disk I/O has been explored and proven to

be effective in many other problems, such as accelerating similarity joins [180, 135] and

queries that contain ML models [142, 176, 42, 125] in cases where computing the similarity

function or running model inference is expensive during query execution. MaskSearch’s

filter-verification execution framework leverages CHI to bypass the loading of the masks that

are guaranteed to satisfy or not satisfy the query predicate. Only the masks that cannot

be filtered out are loaded from disk and processed. By doing so, MaskSearch overcomes

the limitation of existing systems by reducing the number of masks that must be loaded to

process a query. Moreover, MaskSearch includes an incremental indexing approach that
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avoids potentially high upfront indexing costs and enables it to operate in an online setting.

Contributions. In summary, the contributions of this chapter are:

• We formalize a novel, and broadly applicable, class of queries that retrieve images and

their masks from image databases based on the properties of the latter, and further extend

the queries to support aggregations across masks and top-k computations.

• We develop a novel indexing technique and an efficient filter-verification query execution

framework.

• We implement the algorithms in a prototype system, MaskSearch, and demonstrate that

it achieves up to two orders of magnitude speedup over existing methods for individual

queries and consistently outperforms existing methods on various multi-query workloads

that simulate dataset exploration and analysis processes.

• We develop a user interface for MaskSearch that allows users to interactively explore

their datasets and models by issuing queries and visualizing the results.

Overall,MaskSearch is an important next step toward the seamless and rapid exploration

of a dataset based on masks generated by AI models. It is an important component in a

toolbox of methods for model explanation and debugging.

Organization. The remainder of this chapter is organized as follows. Section 4.1 provides

background, formalizes the queries that MaskSearch supports, and discusses the challenges

for their efficient execution. Section 4.2 presents the design of MaskSearch, including

the indexing technique and the query execution framework. Experiments are presented

in Section 4.3. Section 4.4 describes the user interface of MaskSearch. The chapter is

summarized in Section 4.5.

4.1 Queries over Masks

This section formalizes the queries that MaskSearch supports and discusses the challenges

associated with their efficient execution.
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4.1.1 Data and Query Model

Data Model. An image is a 2D array of pixel values. A mask over an image is also a 2D

array. The values in a mask, however, are limited to the range [0, 1.0). Figure 4.2 shows

an illustrative example of a toy x-ray image and an associated mask. The example shows

a saliency map in which a higher value indicates that the pixel is more important to the

model’s decision. We can capture this data model with the following conceptual relational

view,

MasksDatabaseView (

mask_id INTEGER PRIMARY KEY,

image_id INTEGER, -- Image from which the mask was derived

model_id INTEGER, -- Model that generated the mask

mask_type INTEGER, -- Type of mask (e.g., saliency map)

mask FLOAT[][],

...);

where mask id, image id, and model id store the unique identifiers of the mask, image,

and model that generate the mask, respectively. mask type is the identifier of the type of

mask (an ENUM type), e.g., saliency map, human attention map, segmentation mask, depth

mask, etc. The mask column stores the mask itself. Each mask is a 2D array of floating points

in the range of [0, 1). Additional columns can store other information, such as ground-truth

labels, predicted labels, and image capture times. With some abuse of notation, an example

tuple in the above view could be (6, 4,ResNet50, SaliencyMap, [[0.9, 0.5, . . .], . . .]), referring to

a saliency map (mask #6) computed for image #4 using ResNet50 [119]. Note that mask id

does not have a direct relationship with image id because an image can have multiple or no

masks.

An ROI is a bounding box which can either be user-specified or computed by a query.

Figure 4.2 shows a user-specified ROI that corresponds to the part of the image with the

lungs. ROIs are query-dependent, so they are not included in MasksDatabaseView.

Basic Queries. MaskSearch supports queries that specify: (1) regions of interest within
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(a) Example image (b) Mask

Figure 4.2: A toy image motivated by [89] and its mask. The purple box is the ROI. Predicates
on masks often involve counting the number of pixels in the ROI with values in a range, e.g.,
# pixels in the ROI with values in (0.85, 1.0) is 2.

images (e.g., where the user expects the lungs to be located), (2) filter predicates over the

pixel values in a mask (e.g., all pixel values above a threshold, indicating importance), and

aggregates over those pixels that satisfy the predicates (i.e., count of pixels). A query over

a mask can be expressed with the following query, where concepts like CP(...) will be

explained in detail below,

SELECT *, CP(mask, roi, (lv, uv)) AS val

FROM MasksDatabaseView

WHERE <filter on CP(...)> [AND | OR] ... -- optional

ORDER BY val [ASC | DESC] [LIMIT K] -- optional

Region of interest (ROI). The ROI, roi, is a bounding box represented by pairs of

coordinates that are the upper left and lower right corners of the box. It can be constant

for all masks or different for each mask, e.g., the bounding box of the foreground object in

each image computed by an off-the-shelf model. The ROI is specified by the user at query

time or obtained from another table (e.g., a table containing bounding boxes) joined with

MasksDatabaseView.

CP function. At the core of the query is the CP function. It stands for “Count Pixels”.
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It takes in a mask, an ROI, a lower bound (lv), and an upper bound (uv) as input, and

returns the number of pixels in the ROI of the mask with values in the range of [lv, uv). CP

is formally defined as follows,

CP(mask, roi, (lv, uv)) =
∑

(x,y)∈roi

1lv≤mask[x][y]<uv

where 1condition is an indicator function that is 1 if the condition is true and 0 otherwise.

The output of CP is a scalar value and arithmetic operations can be applied to it. In our

queries, CP is often present in the filter predicate, e.g., CP(mask, roi, (lv, uv)) > T , and in

the ORDER BY clause, e.g., ORDER BY CP(mask, roi, (lv, uv)) ASC. Multiple CP functions can

be used in a query, e.g., to specify multiple ROIs, or to compute multiple ratios of pixels

in different ranges. The CP function is abstracted from the applications that motivated

MaskSearch (examples from the beginning of the chapter and below) and is based on the

observation that they can be expressed as predicates or aggregations together with predicates

over pixel values and pixel counts.

Example 1: Consider Scenario 2 from the beginning of the chapter. Alice, the scientist,

is building a model that takes X-ray images as input and classifies them as COVID-19 vs.

non-COVID. Her model does not work well once deployed. To investigate the problem, Alice

wants to verify that the model is focusing its attention on the region in the images that

corresponds to the lungs. Hence, she writes a query that computes the number of salient (i.e.,

important, e.g., with value > 0.85) pixels within the ROI that corresponds to the lungs, which

she specifies manually as a bounding box, roi1. She retrieves all the images where the number

of salient pixels is less than 10,000 by,

SELECT image_id

FROM MasksDatabaseView

WHERE CP(mask, roi, (0.85, 1.0)) < 10000;

1For readability, we specify the ROI as the variable, roi. This would normally be a set of four numbers
specifying the coordinates of the bounding box.
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She can also compute the ratio of the number of salient pixels within the lung region to the

total number of salient pixels in the image. She queries the top-25 images with the lowest

ratios by,

SELECT image_id, CP(mask, roi, (0.85, 1.0)) / CP(mask, -, (0.85,1.0)) AS r

FROM MasksDatabaseView

ORDER BY r ASC LIMIT 25;

Complex Queries. MaskSearch further supports aggregations over pixel counts and

pixel counts over aggregated masks. These more complete queries can be expressed with the

following SQL,

SELECT [mask_id | image_id | model_id | ...],

[SCALAR_AGG(CP(mask, roi, (lv, uv)))

| CP(MASK_AGG(mask), roi, (lv, uv))] AS aggregate

FROM MasksDatabaseView

WHERE <filter on CP(...)> [AND | OR] ... -- optional

GROUP BY [image_id | model_id | mask_type] -- optional

HAVING <filter on aggregate> [AND | OR] ... -- optional

ORDER BY aggregate [ASC | DESC] [LIMIT K] -- optional

Scalar aggregation. The user can aggregate the outputs of CP functions for masks of the

same image, model, or mask type, by defining the SCALAR AGG function, which aggregates the

outputs of CP functions. MaskSearch supports common functions such as SUM, AVG, MIN,

and MAX, e.g., the average of multiple CP functions over masks produced by different models

grouped by image id.

Mask aggregation. MASK AGG is used to aggregate masks themselves. It is a user-defined

function that takes in a list of masks as input and returns a mask: MASK AGG → FLOAT[][].

An example of MASK AGG is INTERSECT(m1 > 0.8, ...,mn > 0.8), i.e., the intersection of n masks

after thresholding at 0.8.

Example 2: Consider a case where our user in Scenario 2 from the beginning of the chapter,

Alice, would like to understand if her model focuses on the same parts of the X-ray images



76

as human experts. After setting roi to the full mask, she can write the query below, where

saliency maps have mask type = 1 and human attention maps have mask type = 2,

SELECT image_id, CP(INTERSECT(mask > 0.7), -, (0.7, 1.0)) AS s

FROM MasksDatabaseView

WHERE mask_type IN (1, 2)

GROUP BY image_id

ORDER BY s DESC LIMIT 10;

4.1.2 Challenges

Processing the above queries efficiently is challenging. A baseline approach of loading masks

from disk into memory before query processing is extremely slow because it saturates disk

read bandwidth. A single query on ImageNet [90] takes more than 30 minutes to complete

(Figure 4.6). Alternatively, storing compressed masks reduces data loaded from disk but

moves the bottleneck to decompression, so a single query on ImageNet still takes around 30

minutes.

Existing systems, such as PostgreSQL, have the same bottleneck of loading masks from

disk. Multi-dimensional indexing techniques do not efficiently support our target queries

for two reasons: (1) they cannot handle mask-specific ROIs within a single query; (2) their

complexity is high because mask data is dense. Assuming a constant ROI for all masks, these

techniques require representing each mask’s pixel as a point in the space of (x, y, pixel value).

In this space, our query is an orthogonal range query followed by an aggregation by mask id.

The best known algorithm [73, 74], range trees, has a query time of O(k + log2 n) and a

preprocessing time of O(n log2 n), with a space complexity greater than O(n). Here, n is

the number of total mask pixels in the dataset, and k is the number of pixels in the cuboid

defined by roi and (lv, uv). n is extremely large because mask data is dense (e.g., 65

billion for ImageNet), which makes using these indexes infeasible.

Vector databases, both functionally and practically do not support our target queries.

Vector databases are designed for similarity searches, where an input vector’s similarity to
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stored vectors is calculated to find the closest matches. In contrast, MaskSearch targets

queries that retrieve masks based on the number of pixels within ROIs and pixel value ranges,

and optionally computes aggregations and top-k results. Storing the counts of pixels within

ROIs and pixel value ranges as metadata in vector databases is impractical because the ROIs

and pixel value ranges are specified at query time and can be arbitrary. Furthermore, vector

databases often have dimensionality limits, such as 32,768 [33] in Milvus and 20,000 [32] in

Pinecone, while a mask of 224× 224 pixels has 50,176 dimensions, exceeding these limits.

Array databases [67, 205] are designed to work with dense arrays, but they are optimized

for complex computations over small numbers of large arrays rather than efficiently searching

through large numbers of arrays. While they can load specific slices within a desired ROI

rather than entire arrays, MaskSearch avoids loading any pixels at all for a large fraction

of masks, as we explain next.

4.2 MaskSearch

MaskSearch efficiently executes queries over a database of image masks while guaranteeing

the correctness of query results. As presented above, the fundamental operations in our target

queries involve filtering masks based on pixel values within ROIs, followed by performing

optional aggregations, sorting, or top-k computations. The key challenge when performing

these operations is that the database of masks is too large to fit in memory, and scanning,

loading, and processing all masks is slow.

To accelerate such queries, MaskSearch introduces a novel type of index, called the

Cumulative Histogram Index (CHI) (Section 4.2.1), and an efficient filter-verification query

execution framework (Section 4.2.2). The CHI technique indexes each mask by maintaining

pixel counts for key combinations of spatial regions and pixel values. CHI constructs a compact

data structure that enables fast computation of upper and lower bounds on CP functions for

arbitrary ROIs and pixel value ranges. These bounds are used during query execution to

efficiently filter out masks that are either guaranteed to fail the query predicate or guaranteed

to satisfy it without loading them from disk. The query execution framework comprises two



78

stages: the filter stage and the verification stage. During the filter stage, the framework

utilizes CHI to compute bounds on CP functions to filter out the masks without loading

them from disk. Then, during the verification stage, the framework verifies the remaining

masks by loading them from disk and applying the full predicate. This framework guarantees

the correctness of the query results and overcomes the bottleneck of query execution by

significantly reducing the number of masks that must be loaded from disk.

4.2.1 Cumulative Histogram Index (CHI)

The key goals of CHI are to: (G1) support arbitrary query parameters lv and uv that specify

the range of pixel values, which are unknown to MaskSearch ahead of time, and (G2)

support arbitrary regions of interest, roi, and allow mask-specific rois in a single query. The

rois are also unknown ahead of time because the user can specify rois arbitrarily at query

time.

Key Idea. MaskSearch achieves both goals by building CHI to maintain pixel counts

for different combinations of spatial locations and pixel values for each mask. Conceptually,

MaskSearch builds an index on the search key (mask id, roi, pixel value). For each search

key, CHI conceptually holds the number of pixels in the mask with the specified pixel value

within the specified roi.

Building an index on every possible combination of (mask id, roi, pixel value) is infeasible

both in terms of space and time complexity because the number of possible rois for each

mask is quadratic in the number of pixels in the mask, let alone the number of masks and

the number of possible pixel values.

Instead, CHI is a data structure that efficiently provides upper and lower bounds on

predicates, rather than exact values. This approach leads to a small-sized index while still

effectively pruning masks that are either guaranteed to fail the predicate or guaranteed to

satisfy it. Only a small fraction of masks must then be loaded from disk and processed in full

to verify the predicate.

CHI Details. CHI leverages two key ideas: discretization and cumulative counts. Discretiza-
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tion reduces the total amount of information in the index, while cumulative counts yield

highly efficient lookups. We explain both here.

To build a small-sized index, MaskSearch partitions masks into disjoint regions and

discretizes pixel values into disjoint intervals. It then builds an index on the combinations

of (mask id, region, pixel value interval), i.e., for each mask, it maintains pixel counts for

combinations of partitioned spatial regions and pixel value intervals. Spatially, MaskSearch

partitions each mask into a grid of cells, each of which is wc by hc pixels in size. Pixel value-

wise, MaskSearch discretizes the values into b buckets (bins). MaskSearch could use

either equi-width or equi-depth buckets. Our prototype uses equi-width buckets.

After discretization, there are several options for implementing the index. A straightfor-

ward option is to build an index on the search key (mask id, cx id, cy id, bin id), where cx id,

cy id, and bin id identify the coordinates of each unique combination of grid and pixel-value

range (e.g., cx id of 3 corresponds to the grid cell that starts at pixel wc ∗ 3, similarly for

cy id and bin id). For each such key, the index could store the number of pixels in the mask

whose coordinates are in the cell identified by (cx id, cy id) and with values in the range

[pmin+ bin id ·∆, pmin+(bin id+1) ·∆), where pmin is the lowest pixel value across all masks

and ∆ is the width of each bucket. This option would require MaskSearch to identify

all the cells that intersect with roi and all the bins that intersect with (lv, uv) and perform

our query execution technique (discussed in Section 4.2.2) on the pixel counts of these cells

and bins. A more efficient approach, which we adopt, is to build an index on the search key

(mask id, cx id, cy id, bin id), but, for each key, store the reverse cumulative sum of pixel

counts in the mask with values in the range [pmin+bin id·∆, pmax] and coordinates in the region

of ((1, 1), (cx id · wc, cy id · hc)). This index is denoted with H(mask id, cx id, cy id, bin id).

We will also use H(mask id, cx id, cy id) to denote the array of cumulative sums for all

bins, i.e., H(mask id, cx id, cy id)[bin id] = H(mask id, cx id, cy id, bin id). Recall that a

mask id uniquely identifies a mask. The index can be formally expressed as,



80

Figure 4.3: An example of CHI, CP, available region, and C.

H(mask id,cx id, cy id, bin id) =

CP(mask, ((1, 1), (cx id · wc, cy id · hc)), (pmin + bin id ·∆, pmax))
(4.1)

Example: In Figure 4.3, MaskSearch builds CHI for an example mask, M , with wc = 2,

hc = 2, and b = 2. Hence, each blue mask cell, (xc, yc), marks the corner of a discretized region.

With b = 2, the pixel value range is discretized into 2 bins, [0, 0.5) and [0.5, 1). MaskSearch

builds H(M,xc/wc, yc/hc) for each blue mask cell (xc, yc). For example, the blue mask cell

(2, 2), corresponds to index entry (xc = 1, yc = 1), and we have H(M, 1, 1)[0] = 4 (all four

pixels are in (pmin, pmax)) and H(M, 1, 1)[1] = 0 (no pixels are in the 0.5 to pmax range). For

cell (4, 4), H(M, 2, 2) = [16, 3].

In essence, H(mask id, cx id, cy id, bin id) stores a cumulative sum of pixel counts, con-

sidering both spatial and pixel value dimensions. Storing cumulative sums offers greater

efficiency compared to storing raw values, as it enables rapid evaluation of pixel counts within

a specific range, in terms of both spatial and pixel value dimensions, by only performing

simple arithmetic operations without having to access all the bins within the desired pixel

value range for all the cells in the desired spatial region. To illustrate this, we first introduce



81

the concept of available regions.

Definition 4.2.1. Let Xc denote {xc|xc ∈ [wc, 2wc, 3wc . . . , w]} and Yc denote {yc|yc ∈

[hc, 2hc, 3hc, . . . , h]}. A region ((x1, y1), (x2, y2)) is available in the CHI of a mask if (x2, y2) ∈

Xc × Yc and (x1 − 1, y1 − 1) ∈ (Xc ∪ {0})× (Yc ∪ {0}).

Example: Available regions in Figure 4.3 are bounding boxes that start from the bottom-right

corner of a blue cell2 and end at the bottom-right corner of a blue cell, e.g., ((3, 3), (4, 6))

is an available region, highlighted with a dark green bounding box; ((4, 4), (5, 5)) is not an

available region, highlighted with an orange bounding box.

Pixel counts within available regions are used to compute bounds on CP functions for

arbitrary ROIs and pixel value ranges during query execution (Section 4.2.2). Before we get

to these bounds, we explain how to compute pixel counts within an available region with

pixel values within the range of two bin boundaries. MaskSearch performs two steps: (1)

compute the reverse cumulative sums (C below) for the specified region by looking up the

CHI entries (H); (2) calculate pixel counts between the two bin boundaries by subtracting

the relevant cumulative sums. The details are explained below.

Let C(mask id, r) denote the histogram of the reverse cumulative pixel counts of region r

in mask mask id, where C(mask id, r)[i] = CP(mask, r, (pmin + i∆, pmax)). MaskSearch

can compute C(mask id, ((x1, y1), (x2, y2))) for any available region ((x1, y1), (x2, y2)) (step

(1) above). Let M denote mask id,

C(M, ((x1, y1), (x2, y2)))

= H(M,x2/wc, y2/hc)−H(M, (x1 − 1)/wc, y2/hc)

− H(M,x2/wc, (y1 − 1)/hc) +H(M, (x1 − 1)/wc, (y1 − 1)/hc)

(4.2)

where − and + are element-wise subtraction and addition, respectively, for two arrays of the

same size. Equation (4.2) holds because C(mask id, region) is a (finitely)-additive function

over disjoint spatial partitions since each bin of C(mask id, region) is a CP function which is

2(0, 0), not shown in the figure, is considered as a blue cell as well.
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Figure 4.4: Illustration of CP being a (finitely)-additive function.

(finitely)-additive. Figure 4.4 shows an illustrative example of this additive property. Note

that for any mask id and roi, C(mask id, roi)[⌈pmax/∆⌉] is always 0 for notation simplicity.

Example: Figure 4.3 shows how C(M, ((3, 3), (4, 6))) is computed.

After MaskSearch computes the reverse cumulative sums of pixel counts, C, for a region

r, the pixel counts between any two bin boundaries (for pixel value discretization) can be

obtained by subtracting the cumulative sums of the two bins (step (2) above).

Given a predicate CP(mask, roi, (lv, uv)) > T , MaskSearch uses CHI to check whether

the predicate is satisfied. At a high level, MaskSearch identifies available regions, r1 and

r2, in the CHI of the mask, such that r1 is the smallest region that covers roi and r2 is

the largest region that is covered by roi. Then, MaskSearch computes C(mask, r1) and

C(mask, r2) using Equation (4.2) and uses them to compute the lower and upper bounds of

CP(mask, roi, (lv, uv)). Finally, MaskSearch checks whether mask is guaranteed to satisfy

or guaranteed to fail the predicate by comparing the lower and upper bounds with T . The

details are further explained in Section 4.2.2.

Since mask id, cx id, cy id, and bin id are all integers, rather than building a B-tree index

or a hash index over the keys, we create an optimized index structure using an array where

mask id, cx id, cy id, and bin id act as offsets for lookups in the array. We call this structure

the Cumulative Histogram Index (CHI) and H(mask id) the CHI of mask mask id. There

are several advantages of this optimized index structure. First, it enables MaskSearch to
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only store the values of CHI and avoid the cost of storing the keys of CHI and the overhead of

building a B-tree or hash index. Second, for any lookup key, the lookup latency is of constant

complexity and avoids pointer chasing which is common in other index structures.

The time complexity for computing CHI for N masks of size w×h is O(N ·w ·h), and this

cost is amortized over time with the incremental indexing technique described in Section 4.2.6.

The number of CHI that MaskSearch builds for N masks is N ·w · h/(wc · hc). Each CHI

has b bins, thus taking 4·b bytes. Hence, the set of CHI for N masks takes 4·b·N ·w ·h/(wc ·hc)

bytes in space. With a reasonable configuration of b, wc, and hc, CHI can be held in memory

for a moderately-sized dataset, and MaskSearch can achieve good query performance with

it (see Section 4.3.2).

4.2.2 Filter-Verification Query Execution

Without loss of generality, in this section, we will show how MaskSearch accelerates

the execution of a one-sided filter predicate CP(mask, roi, (lv, uv)) > T , denoted with P ,

as multiple one-sided filter predicates can be combined to form a complex predicate. In

Section 4.2.3, we will show that our technique applies to accelerating predicates that are in

the form of CP(...) < T or involve multiple different CP functions, e.g., CP(...) < CP(...).

Aggregations and top-k queries are discussed in Section 4.2.4 and Section 4.2.5, respectively.

MaskSearch takes as input a filter predicate P , and its goal is to find and return the

mask ids of the masks that satisfy P . At a high level, MaskSearch executes the following

workflow:

• Filter stage: filter out the masks that are guaranteed to fail the predicate P , and add

the masks that are guaranteed to satisfy P directly to the result set, before loading them

from disk.

• Verification stage: load the remaining unfiltered masks from disk to memory and verify

them by applying predicate P . If a mask satisfies P , add it to the result set.

It is worth noting that MaskSearch guarantees the correctness of the query results with
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Table 4.1: Summary of frequently used notation in MaskSearch.

Symbol Meaning

CP(mask, r, (lv, uv)) Count of pixels in region r of mask
with pixel values in range (lv, uv)

P Predicate CP(mask, roi, (lv, uv)) > T
mask id Identifier of mask
θ Actual value of CP(mask, roi, (lv, uv))
θ̄ Upper bound of θ

¯
θ Lower bound of θ
pmin Minimum pixel value
p max Maximum pixel value
∆ Size of a pixel value bin
C(mask id, r) Histogram of reverse cumulative pixel counts
C(mask id, r)[i] CP(mask, r, (pmin + i∆, p max))
roi Region of interest specified by the user
roi Smallest region available in CHI covering roi
roi Largest region available in CHI covered by roi

this two-stage execution framework.

Filter Stage

At a high level, the algorithm works as follows, for each mask, MaskSearch uses the CHI

of the mask to compute bounds of CP(mask, roi, (lv, uv)), and it then uses the bounds to

determine whether the mask will satisfy P or not. In this manner, MaskSearch reduces the

number of masks loaded from disk during the verification stage (Section 4.2.2) by pruning

the masks that are guaranteed to fail P and adding the masks that are guaranteed to satisfy

P directly to the result set R. Deriving the bounds of CP(mask, roi, (lv, uv)) is challenging

because roi and (lv, uv) can be arbitrary and not known in advance. MaskSearch addresses

this challenge by leveraging the CHI of masks and the (finitely)-additive property of CHI to

derive the bounds for arbitrary roi and (lv, uv).

Notation. P denotes CP(mask, roi, (lv, uv)) > T . mask is uniquely identified by mask id.
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θ denotes the actual value of CP(mask, roi, (lv, uv)). θ̄ and
¯
θ denote the upper bound and

the lower bound on θ computed by MaskSearch, respectively. C(mask id, r) denotes the

histogram of reverse cumulative pixel counts of the pixel value bins of region r in mask

mask id, where C(mask id, r)[i] = CP(mask, r, (pmin + i∆, pmax)). When clear from context,

we use C(r) to denote C(mask id, r). Frequently used notation is summarized in Table 4.1.

When a session of MaskSearch starts, the CHI of each mask is loaded from disk to

memory and will be held in memory for the duration of the system run time. In cases where

CHI cannot be held in memory, MaskSearch loads the CHI of a mask from disk on demand

during query execution. Note that the size of the CHI of a mask is much smaller than the

size of the mask itself, and therefore, even if the CHI of a mask is on disk, computing the

bounds is much less expensive than loading the masks from disk to memory and evaluating

the predicate P on them.

Given a predicate P , MaskSearch processes each mask targeted by the filter predicate

in parallel. For each mask uniquely identified by mask id, MaskSearch proceeds as follows:

Step 1: Compute θ̄ and
¯
θ. In this step, MaskSearch computes θ̄ and

¯
θ by using the

CHI of mask id. MaskSearch uses two approaches to computing two upper bounds, θ̄1

and θ̄2, on θ, and uses the smaller one as θ̄. The two approaches are effective in yielding

bounds in different scenarios (details below).

Approach 1 first identifies the smallest available region (Definition 4.2.1) in the CHI that

covers roi of mask id. For any mask id and roi, an available region that covers roi always

exists because the bounding box that covers the entire mask is always an available region.

We denote this region with roi. Then, C(roi) (i.e., C(mask id, roi)) can be computed by

CHI using Equation (4.2). Finally, θ̄1 is computed as,

θ̄1 = C(roi)[⌊lv/∆⌋]− C(roi)[⌈uv/∆⌉] (4.3)

where ⌊x⌋ and ⌈x⌉ denote the floor and ceiling of x, respectively.

Approach 2 first identifies the largest available region (Definition 4.2.1) covered by roi in
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the CHI for each mask. We denote this region with roi. Then, C(roi) (i.e., C(mask id, roi))

can be computed using Equation (4.2). Finally, θ̄2 is computed as,

θ̄2 = C(roi)[⌊lv/∆⌋]− C(roi)[⌈uv/∆⌉] + |roi| − |roi| (4.4)

where | · | denotes the area of a region. Note that roi does not always exist in cases where wc

and hc are large. In such cases, Approach 2 abstains from computing a bound and θ̄2 is set

to ∞.

Finally, θ̄ is computed by taking the minimum of θ̄1 and θ̄2. To show θ̄ is an upper bound

of θ, we first show the following inequality. Because (⌊lv/∆⌋ ∗∆, ⌈uv/∆⌉ ∗∆) is a superset

of (lv, uv), for any mask id and roi, we have,

C(roi)[⌊lv/∆⌋]− C(roi)[⌈uv/∆⌉] ≥ θ (4.5)

We now show the following theorem.

Theorem 2. θ̄ is an upper bound of θ.

We prove the theorem by showing both θ̄1 ≥ θ and θ̄2 ≥ θ. For conciseness, we omit

mask id in C(mask id, ...) and omit mask in CP(mask, ...) when clear from context, i.e.,

C(Q) denotes C(mask id,Q) and CP(Q, (lv, uv)) denotes CP(mask,Q, (lv, uv)). We also use

CP(Q \W, (lv, uv)) to denote the count of pixels in spatial region Q \W with pixel values in

(lv, uv).

Proof. We first show θ̄1 ≥ θ.

θ̄1 = C(roi)[⌊lv/∆⌋]− C(roi)[⌈uv/∆⌉] (4.6)

≥ CP(roi, (lv, uv)) (4.7)

= CP(roi, (lv, uv)) + CP(roi \ roi, (lv, uv)) (4.8)

≥ CP(roi, (lv, uv)) = θ (4.9)
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Figure 4.5: An example of MaskSearch computing the upper bounds, θ̄1 and θ̄2, given a
mask, roi, and (lv, uv).

where Inequality (4.7) follows from Equation (4.5) and Equation (4.8) follows from CP is

an additive function over disjoint spatial regions.

Let L denote (⌊lv/∆⌋ ∗∆, ⌈uv/∆⌉ ∗∆). We now show θ̄2 ≥ θ.

θ = CP(roi, (lv, uv)) (4.10)

≤ CP(roi, L) (4.11)

= CP(roi, L) + CP(roi \ roi, L) (4.12)

≤ CP(roi, L) + |roi| − |roi| (4.13)

= C(roi)[⌊lv/∆⌋]− C(roi)[⌈uv/∆⌉] + |roi| − |roi| = θ̄2 (4.14)

where Equation (4.12) follows from the fact that CP is an additive function over disjoint

spatial regions. Inequality (4.13) is because the count of pixels in any region with pixel values

in any range is bounded by the total number of pixels in the region.

Example: The two approaches are illustrated with an example mask in Figure 4.5. Mask

data is the same as in Figure 4.3. The first approach identifies roi, which is ((3, 3), (6, 6)),
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and C(M, roi) is computed using Equation (4.2). Then, θ̄1 is computed using Equation (4.3),

i.e., C(M, roi)[1]− C(M, roi)[2] = 8− 0 = 8. The second approach identifies roi, which is

((3, 3), (4, 4)), and C(M, roi) is computed using Equation (4.2). Then, θ̄2 is computed using

Equation (4.4), i.e., C(M, roi)[1]− C(M, roi)[2] + |roi| − |roi| = 2− 0 + 9− 4 = 7.

The two approaches are effective in yielding bounds in different scenarios. Intuitively, the

first approach is more effective when roi and roi are close to each other, which would result

in a small difference between θ̄1 and θ. The second approach is more effective when roi and

roi are close to each other.

The lower bound,
¯
θ, can be computed similarly following the two approaches.

Step 2: Determine the relationship between θ̄ and
¯
θ and T . In this step, MaskSearch

determines whether the predicate P is satisfied by the mask based on the relationship between

θ̄ and
¯
θ and T . There are three cases:

• Case 1: θ̄ ≤ T . The mask is pruned because it is impossible for the mask to satisfy the

predicate P .

• Case 2:
¯
θ > T . The mask is directly added to the result set R because the mask is

guaranteed to satisfy the predicate P .

• Case 3:
¯
θ ≤ T < θ̄. The mask is added to the candidate mask set S since it needs to be

verified against P in the verification stage.

Verification Stage

The verification stage aims to verify each candidate mask in S that was neither pruned nor

directly added to the result set. By loading it from disk and computing the actual value of θ,

and then evaluating the predicate P , MaskSearch determines whether the mask satisfies

the predicate P . If the mask satisfies the predicate P , it is added to the result set R.



89

4.2.3 Generic Predicates

So far, we have described how MaskSearch can efficiently process predicates in the form of

CP(mask, roi, (lv, uv)) > T . Supporting predicates in the form of CP(mask, roi, (lv, uv)) < T

is similar to the previous case. The only difference is that in Step 2 of the filter stage,

MaskSearch directly adds the mask to the result set R if θ̄ < T and prunes the mask if

¯
θ ≥ T .

MaskSearch also supports generic predicates that involve multiple CP functions, i.e.,

CP1(...) op1 CP2(...) · · · opn-1 CPn(...) > T . Let F = CP1(...) op1 · · · opn-1 CPn(...). MaskSearch

uses the lower and upper bounds of every CP function to derive the lower and upper bounds of

F and use the bounds to efficiently prune the masks that are guaranteed to fail the predicate

or guaranteed to satisfy it in the filter stage described in Section 4.2.2, as long as F is

monotonic with respect to each CPi function. Common operators that make F monotonic

include +,−,×.

4.2.4 Aggregation

MaskSearch supports queries that contain scalar aggregates on CP functions or on the CP

function over mask aggregations, as described in Section 4.1. For filter predicates on scalar

aggregates, e.g., SUM(CP(mask, roi, (lv, uv))) > T group by image id, MaskSearch uses the

same approach as in Section 4.2.3 to efficiently filter out groups of masks associated with

the same image id that are guaranteed to fail the predicate or guaranteed to satisfy it, since

common scalar aggregate functions (SUM, AVG, and etc.) are monotonic with respect to the CP

function. For filter predicates on mask aggregations, e.g., CP(MASK AGG(mask), roi, (lv, uv)) >

T , MaskSearch treats the aggregated masks as new masks and uses the same approach

described in Section 4.2.2 to process the query. The index for the aggregated masks is

either built ahead of time or incrementally built (Section 4.2.6), which is a limitation of the

current prototype. However, when the mask aggregation is monotonic, e.g., weighted sum,

MaskSearch can be easily extended to support efficient filtering of the aggregated masks
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Table 4.2: Summary of evaluated queries based on motivation and related work.

Query Description

Q1 Returns masks s.t. CP(mask, roi, (lv, uv)) > 5000, roi = ((50, 50), (200, 200)), (lv, uv) =
(0.6, 1.0), model id = 1

Q2 Returns masks s.t. CP(mask, roi, (lv, uv)) > 15,000, roi = object, (lv, uv) = (0.8, 1.0),
model id = 1

Q3 Returns top-25 masks with largest CP(mask, roi, (lv, uv)), roi = ((50, 50), (200, 200)),
(lv, uv) = (0.8, 1.0), model id = 1

Q4 Returns top-25 images with largest mean(CP(mask, roi, (lv, uv))) (groupby image id) for
masks associated with two models, roi = object, (lv, uv) = (0.8, 1.0)

Q5 Returns top-25 images with largest CP(intersect(mask), roi, (lv, uv)) (groupby image id)
for masks associated with two models, roi = object, (lv, uv) = (0.8, 1.0)

using indexes built for the individual masks.

4.2.5 Top-K

To answer top-k queries, MaskSearch follows a similar idea as described in Section 4.2.2, but

it intertwines the filter and verification stages to maintain the current top-k result. Without

loss of generality, let’s consider the case of a top-K query seeking the masks with the highest

values of the CP function. The set of top-k masks can be defined as a set, R, of k masks. R is

initially empty and is conceptually built incrementally as the query is executed by identifying

and adding to R the next mask, mask (associated with its CP(mask, roi, (lv, uv)) value), that

satisfies the following condition,

CP(mask, roi, (lv, uv)) > min
mask′∈R

CP(mask′, roi, (lv, uv)) (4.15)

MaskSearch sequentially processes the masks. For each mask, it computes the upper

bound θ̄ and compares θ̄ with the CP values of the currentR. If θ̄ ≤ minmask′∈R CP(mask′, roi, (lv, uv)),

the mask is pruned because it is impossible for the mask to be in the top-k result; otherwise,

MaskSearch loads the mask from disk and computes the actual value of CP(mask, roi, (lv, uv)).

It then updates R by adding the mask to R if it satisfies Inequality 4.15.
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4.2.6 Incremental Indexing

As we show in Section 4.3.2 and Section 4.3.3, the vanilla MaskSearch system described

so far achieves a significant query time improvement over the baselines with a small index

size. The approach so far, however, incurs a potentially high overhead during preprocessing

to build the index. Before processing any query, the vanilla approach must build the CHI for

every mask in the database, which could lead to a long wait time for the user to get the first

result.

To address this challenge, we propose building CHI incrementally as queries are executed

so that only the masks that are necessary for the current query are indexed. Every time

the user issues a query, as MaskSearch sequentially processes each mask as described

in Section 4.2.2, it checks if the CHI of the mask is already built. If so, MaskSearch

directly proceeds as described in Section 4.2.2. If not, MaskSearch executes the query by

loading the masks from disk and evaluating whether they satisfy the query predicates. For

each mask loaded from disk, MaskSearch then builds the CHI for the mask and keeps

it in memory for future queries in the same session. When a MaskSearch session ends,

the CHI for all the masks in the session is persisted to disk for future sessions. With this

approach, the cost of building the CHI of a mask is incurred once the first time the mask is

loaded from disk, and only if the mask is necessary for a query. In Section 4.3.5, we show

that MaskSearch with such incremental indexing amortizes the cost of indexing quickly

and significantly outperforms other baseline methods on multi-query workloads.

4.3 Evaluation

4.3.1 Experimental Setup

Implementation. MaskSearch is written in Python as a library and can work seamlessly

with existing data management systems that stores and indexes the metadata of masks and

images.

Dataset. We evaluate MaskSearch on two pairs of datasets and models. The first pair
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of dataset and model, called WILDS, is from [154]. WILDS contains 22,275 images from

the in-distribution and out-of-distribution validation sets of the iWildCam dataset [154].

For each image, we use GradCAM [241] to generate two saliency maps for two different

ResNet50 [119] models obtained from [154]. Each saliency map is 448 × 448 pixels. The

second, called ImageNet, contains 1,331,167 images from the ImageNet dataset [90]. We also

use GradCAM [241] to generate two saliency maps for two different ResNet50 [119] models

for each image, and use them as the masks for ImageNet. Each mask in ImageNet is 224×224

pixels. These two pairs of models and datasets complement each other in terms of the

number of images (and masks) and the size of the masks.

MaskSearch configuration. Unless otherwise specified, we set b (the number of buckets for

pixel value discretization) to 16 for both WILDS and ImageNet ; then we set wc = hc = 64

(the cell size for spatial partitioning) for WILDS and wc = hc = 28 for ImageNet, such that

the uncompressed index sizes for both datasets are around 5% of the compressed dataset

sizes: the uncompressed index size is 6.5 GB for ImageNet and 88 MB for WILDS. The effect

of more granular indexes is discussed in Section 4.3.4.

Baselines. As discussed earlier in the chapter, there is a lack of system support for the

efficient processing of our targeted queries. To the best of our knowledge, no existing system

reduces the work required, i.e., loading the masks from disk and computing the CP function

values for them, to process a query. Thus, we compare MaskSearch to the following three

baselines: (1) PostgreSQL 10. The masks are stored as 2D arrays of floating points as

described in Section 4.1. The CP function is implemented as a user-defined function (UDF)

written in C and compiled into a dynamically shared library. (2) TileDB 2.17.1 [205] with

TileDB-Py 0.23.1. The masks are stored as a 3D array of floating points, with the first

dimension being the mask ID, and the second and third dimensions being the height and

width of the mask, respectively. The tile sizes for WILDS and ImageNet are set to 448× 448

and 224×224, respectively because we found that these tile sizes provide the best performance

for TileDB compared to other tile sizes. (3) NumPy 1.21.6. The masks are stored as NumPy

arrays on disk. The CP function is implemented in Python and uses NumPy functions to
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ensure vectorized computation.

Machine configuration. All experiments were run on an AWS EC2 p3.2xlarge instance,

which has an Intel Xeon E5-2686 v4 processor with 8 vCPUs and 61 GiB of memory, an

NVIDIA Tesla V100 GPU with 16 GiB of memory, and EBS gp3 volumes provisioned with

3000 IOPS and 125 MiB/s throughput for disk storage. We evaluate MaskSearch on a

single-node setup because most data scientists today work with a single machine [78]. Even

in a multi-node setup, MaskSearch still reduces the number of masks loaded from disk

(or over the network) and processed to answer a query, which is the dominant cost of query

execution. The GPU was only used to compute the masks. All evaluated methods were using

all vCPUs.

4.3.2 Individual Query Performance

We first evaluate the performance of MaskSearch on 5 individual queries motivated by the

examples and use cases from the beginning of this chapter and Section 4.1:

• Q1 (Filter, Scenario 2 from the beginning of this chapter): mask selection with a filter

predicate on CP with a constant roi across all masks.

• Q2 (Filter, a variant of Q1): mask selection with a filter predicate on CP with different

rois for different masks.

• Q3 (Top-K, a variant of Example 1 in Section 4.1): top-k mask selection, ranked by CP

with a constant roi across all masks.

• Q4 (Aggregation, a variant of Example 2 in Section 4.1): image selection with an aggrega-

tion over the CP values of masks associated with different models, with a filter predicate

on the aggregated values.

• Q5 (Mask Aggregation, Example 2 in Section 4.1): image selection with a filter predicate

on the CP value of the aggregated mask computed from the masks associated with different

models.

The specific parameters for each query are shown in Table 4.2. k is set to 25 for top-k
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(a) WILDS

(b) ImageNet

Figure 4.6: End-to-end individual query execution time based on motivation and related
work. The index size for MaskSearch is ∼ 5% of the original compressed dataset size for
both datasets. Note the log scale on the y-axis.

queries because it is a reasonable number of masks to examine for a scientist. When roi is

set to object, the roi is the bounding box of the foreground object in the image generated by

YOLOv5 [136]. We build the CHI for all masks prior to executing the benchmark queries

and clear the OS page cache before each query execution. The median execution time of 5

runs for each query is shown in Figure 4.6. In addition, Table 4.3 displays the number of

masks loaded from disk by each system during query execution.

As Figure 4.6 shows, on WILDS, it takes PostgreSQL, TileDB, and NumPy around 2
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minutes to answer each query; on ImageNet, it takes them more than 30 minutes to answer

each query. Profiling these queries showed that mask-loading from disk dominates the query

execution time. All baseline methods suffer from the same performance bottleneck: they all

load all masks from disk and process them to generate the query results. Q4 notably takes

more time than the other queries. This is because it demands the loading of two masks for

every image due to its aggregation over the CP values of the masks. For Q2, Q4, and Q5 on

ImageNet, TileDB is slower than the other two baselines. The reason is that TileDB has to

sequentially load masks from the disk (instead of slicing the same ROI from multiple masks

at once) because the ROIs in these queries are mask-specific. This results in suboptimal disk

read bandwidth utilization. During the execution of all queries on PostgreSQL and NumPy

and for the other queries on TileDB, we observed that the disk read bandwidth was fully

utilized, reaching 125 MiB/s, the provisioned disk read bandwidth for our EBS volumes.

This confirms that the query execution time is dominated by the time required to load the

masks from disk. Therefore, any system that does not reduce the number of masks loaded

from disk during execution can achieve, at best, a comparable query time to that of NumPy

and PostgreSQL. And, while faster EBS volumes could enhance the baselines’ performance,

MaskSearch would still outperform them by reducing mask-loading during query execution.

MaskSearch executes each query in under 5 seconds on WILDS and in less than 20

seconds on ImageNet, providing query time speedups of up to two orders of magnitude

over the baselines. This significant difference in performance is attributed to MaskSearch

loading many fewer masks (shown in Table 4.3) because its filter-verification framework

enables it to avoid loading from disk the masks that are guaranteed to satisfy the query

predicate or guaranteed to fail it. On ImageNet, MaskSearch’s query time for Q4 is longer

compared to other queries, even though the number of masks loaded for Q4 is smaller. This

discrepancy stems from the additional computation MaskSearch performs for Q4 (2×

bound computation than other queries), as it contains an aggregation.
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Table 4.3: Number of masks loaded during query execution. PG = PostgreSQL, TDB =
TileDB, NP = NumPy.

Dataset Method Q1 Q2 Q3 Q4 Q5

WILDS MaskSearch 407 40 32 874 48
PG & TDB & NP 22,275 22,275 22,275 44,550 22,275

ImageNet MaskSearch 2696 3849 2943 1494 2768
PG & TDB & NP 1,331,167 1,331,167 1,331,167 2,662,334 1,331,167

(a) WILDS (b) ImageNet

Figure 4.7: Query time of MaskSearch for different query types. Index size for
MaskSearch: ∼ 5% of dataset size.

4.3.3 Performance on Different Query Types

In this experiment, we evaluate the performance of MaskSearch on three types of queries

with varying parameters. We only show the execution times of MaskSearch because, for

each query type, baseline methods have similar execution times as the queries of the same

type in Section 4.3.2, regardless of specific query parameters. For each dataset and query type,

we generate 500 queries with randomized parameters and execute them using MaskSearch:

• Filter: this query type contains mask selection queries with a filter predicate CP(mask, roi, (lv, uv)) >
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(a) WILDS, Pearson’s r = 0.99 (b) ImageNet, Pearson’s r = 0.96

Figure 4.8: Relationship between end-to-end query time and the fraction of masks loaded
(FML) for a query.

T . For every query, roi is set as the foreground object bounding box in a mask generated

by YOLOv5 [136]. lv and uv are randomly selected from [0.1, ..., 0.9] and uv is always

greater than lv. The count threshold T is randomly chosen from [0, 1, ..., total # pixels].

• Top-K: this query type returns masks ranked by CP(mask, roi, (lv, uv)). For each query,

roi is randomly generated as any rectangle within the masks. This roi is generated once

for each query and remains constant across all masks. k is set to 25. The order of query

result, i.e., ORDER BY ... DESC or ASC, is randomly selected for each query.

• Aggregation: this type of query returns images ranked by mean(CP(mask, roi, (lv, uv)))

of multiple masks associated with each image. Two masks are associated with each image

and they are generated by GradCAM based on different models. k is set to 25. roi, lv, uv,

and the order of the query result is randomly selected for each query.

Figure 4.7 shows the distribution of query execution times for each query type on both

WILDS and ImageNet. The figure displays the median, minimum, maximum, and interquartile

range (IQR) of these times. The whiskers represent outliers, which are defined as values that
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are more than 1.5 times the IQR away from the median.

MaskSearch demonstrates its superior query execution performance across all query

types with varying parameters. Even when considering the worst-case execution time (i.e.,

the outliers), MaskSearch would still outperform the baselines by a considerable margin,

because the baselines would still load all masks from disk and process them, regardless of the

query parameters.

Moreover, we find that the query execution times of MaskSearch do not exhibit a strong

correlation across different query types. We note that the 75th percentile of the Filter query

type has a longer execution time than that of the other two query types. This is because,

for the other query types, MaskSearch compares the bounds (of CP) with the CP values of

the current top-k set (k=25). This process generally allows for more efficient mask filtering

than comparing the bounds with a fixed count threshold T in the Filter query type. For

example, on WILDS, at the 75th percentile in query time, the number of masks pruned in

MaskSearch’s filter stage during query execution is 21,184 for the Filter query type, 22,106

for Top-K, 21,677 for Aggregation.

Instead, we observe that the execution times tend to differ more significantly among

queries with different parameters within the same query type. In fact, as we discuss further

in Section 4.3.4, for a given dataset, the query execution time of MaskSearch is primarily

determined by the fraction of masks loaded (FML), i.e., masks that are loaded from disk and

used to compute its CP value during query execution. The difference in execution times within

the same query type is mainly due to the difference in the FML for each query. For example,

for the Filter query type on WILDS, the FML at the 25th, 50th, and 75th percentiles are

0.002, 0.012, and 0.049, respectively.

4.3.4 MaskSearch’s Query Time Analysis

In this section, we explore factors affecting MaskSearch’s query execution time by analyzing

1500 Filter queries, defined in Section 4.3.3, executed by MaskSearch on each dataset.

With Figure 4.8, we first establish that, given a dataset, MaskSearch’s query execution
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(a) WILDS, 88M, (.6, 1.) (b) WILDS, 88M, (.8, 1.) (c) WILDS, 2.2G, (.6, 1.) (d) WILDS, 2.2G, (.8, 1.)

(e) ImageNet, 6.5G, (.6, 1.)(f) ImageNet, 6.5G, (.8, 1.)(g) ImageNet, 23G, (.6, 1.)(h) ImageNet, 23G, (.8, 1.)

Figure 4.9: Distributions of bounds of CP(mask, roi, (lv, uv)) computed by MaskSearch.
Each subfigure represents the distribution for a combination of (dataset, index size, (lv, uv)),
shown as the title of each. Each vertical segment represents the lower and upper bounds
of CP(mask, roi, (lv, uv)) for a single mask. For each mask, roi is the foreground object
bounding box. We show the distribution of bounds for 1000 randomly sampled masks in each
subplot. The x-axes represent the masks sorted by their lower bounds. The horizontal dashed
lines represent examples of the count threshold T . FML is the fraction of masks loaded by
MaskSearch given a predicate CP(mask, roi, (lv, uv)) > T . For each count threshold T ,
FML is equal to the fraction of the vertical segments that intersect with the horizontal dashed
line defined by T . Note the different scales of the y-axes.

time is proportional to the fraction of masks loaded (FML) for each query. The FML for a

query is defined as the ratio of masks loaded from disk and used to compute their actual CP

values to the total number of masks the query targets. The Pearson’s correlation coefficient

between query time and FML is 0.99 for WILDS and 0.96 for ImageNet. It again corroborates

that query execution time is dominated by loading masks from disk and computing their CP

values, with a higher FML indicating more masks being loaded from disk.

Now that we have established the relationship between query execution time and FML, we

investigate the factors that affect FML, including the query parameters (region of interest roi,
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pixel value range (lv, uv), count threshold T ), data in the masks (mask), and index granularity

(index size). For MaskSearch, FML is the fraction of masks that are neither pruned nor

added directly to the result set by the filter stage in the filter-verification framework. FML

corresponds to Case 3 in Step 2 of the filter stage; for each mask belonging to this case, its

lower bound
¯
θ for CP computed by MaskSearch is not greater than the count threshold T

and its upper bound θ̄ for CP is greater than T , i.e., θ ≤ T < θ̄.

Figure 4.9 shows the distribution of bounds computed by MaskSearch for both datasets

and queries with varying parameters from the 1500 Filter queries analyzed. Each subfigure

shows the distribution of bounds for a different (dataset, index size, (lv, uv)) combination.

The roi for all subfigures is the foreground object bounding box. The (vertical) segments in

each subfigure represent the bounds computed by MaskSearch for 1000 masks randomly

sampled from the dataset. Each red horizontal dashed line represents an example count

threshold T . In this way, each subfigure visualizes the relationship between the bounds and

FML: for each count threshold T , FML equals the fraction of the segments intersecting with

the red dashed line defined by T .

In each subfigure, different count thresholds T lead to varying FMLs for the same dataset,

index size, and query parameters, as the fraction of segments intersecting with the red dashed

line changes.

Comparing subfigures with the same roi and (lv, uv) but on different datasets reveals that

different sets of masks can result in different FMLs for the same query parameters because of

different pixel value distributions in the roi of the masks. Similarly, changing roi essentially

alters the set of masks targeted by the query, leading to different FMLs. Subfigures with

the same dataset and roi but different (lv, uv) configurations also exhibit different bound

distributions and FMLs for the same count threshold T .

Moreover, subfigures sharing the same dataset and (lv, uv) but with varying index sizes

display different bound distributions and FMLs. Larger index sizes offer more granular indexes,

tighter bounds (shorter vertical segments), and lower FMLs for the same query parameters.

For example, comparing Figure 4.9 (a) and (c), the bounds computed by MaskSearch for
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WILDS with (lv, uv) = (0.6, 1.0) are tighter for the larger index size. Therefore, the FML for

the same count threshold T is lower for the larger index size.

In summary, the data in the masks, region of interest roi, pixel value range (lv, uv), and

index size determine the distribution of bounds computed by MaskSearch. The count

threshold T defines the FML given the distribution of bounds, and the FML dictates the

query execution time of MaskSearch. The granularity of the index represents a tradeoff

between index size and query time, depending on user application requirements and available

resources.

4.3.5 Multi-Query Workload Performance

In this section, we evaluate MaskSearch on multi-query workloads with and without the

incremental indexing technique (Section 4.2.6) which mitigates MaskSearch’s potential

start-up overheads. We generate workloads to simulate the exploration and analysis processes

of users who seek to identify sets of masks satisfying a given predicate.

We simulate workloads where a user begins with a query targeting masks of image subsets

belonging to certain classes and then progressively explores masks associated with other

classes. For example, to identify images with spurious correlations (Scenario 2 from the

beginning of this chapter), the user may first look at the confusion matrix and identify classes

with high false positive rates. Then, the user may issue queries to retrieve images predicted

as those classes to identify possible spurious correlations. Several queries may be issued

targeting those masks, as different query parameters (e.g., roi, lv, uv, T ) may be used to

retrieve and rank masks with different properties, e.g., masks focusing on the foreground

object and masks focusing on the background. After analyzing the returned masks, the user

may continue to explore masks of other classes and repeat the process.

To account for this behavior, we generate four different workloads for each dataset, each

of which comprises 200 Filter queries, with query parameters randomly generated following

the approach described in Section 4.3.3. A parameter pseen is associated with each workload,

representing the likelihood of querying previously targeted masks within the same workload.
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(a) WILDS, Workload 2 (b) ImageNet, Workload 2

(c) WILDS, MS-II vs. MS (d) ImageNet, MS-II vs. MS

Figure 4.10: Cumulative total time, incl. index building time and query time, for multi-
query workloads. MS-II and MS refer to MaskSearch w/ and w/o incremental indexing,
respectively. (a) and (b) show the total time for MS, MS-II, and NumPy for Workload
2; (c) and (d) show the ratio of the cumulative total time of MS-II to that of MS for all
workloads. The index size for MS is ∼ 5% of the corresponding dataset. MS-II builds the
index incrementally using the same index configuration as MS.

Randomized query parameters and pseen are intended to simulate the user’s behavior of issuing

multiple queries targeting the same set of masks with different parameters to retrieve masks
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having different properties. Additionally, each query within a workload targets a specific

subset of masks (e.g., masks of images predicted as certain classes) from the corresponding

full dataset. Let N denote the total number of masks within a dataset. The number of masks

targeted by each query, n, is randomly chosen from [0.1 ·N, 0.2 ·N, 0.3 ·N ]. Then, the set of

targeted masks is generated as follows, we sample without replacement n masks consisting of

pseen% targeted masks and (1−pseen)% unseen ones. Note that when the number of remaining

unseen masks is less than n · (1− pseen), we include all the unseen masks in the current query

and switch to only sampling seen masks for the remaining queries in the workload.

The workloads are labeled as Workload 1, 2, 3, and 4, with their respective pseen values

set to 0.2, 0.5, 0.8, and 1.0. These probabilities signify varying levels of dataset exploration,

with Workload 1 exhibiting the highest degree of exploration and Workload 4 exhibiting the

lowest. By evaluating MaskSearch’s performance across these diverse workloads, we aim

to assess its effectiveness under a range of dataset exploration scenarios.

Figure 4.10 shows the performance of MaskSearch on these four workloads for both

WILDS and ImageNet. MaskSearch is evaluated with and without incremental indexing

against NumPy which represents existing methods that must load and process all masks

from disk for each query. In the figure, MS-II refers to MaskSearch with incremental

indexing and MS refers to MaskSearch without incremental indexing. We measure the

cumulative total time, i.e., the time elapsed for index building plus the time elapsed for

query execution, for each method. Note that the time to initially build the indexes without

incremental indexing is included with the 0-th query for MS in all subfigures.

Figure 4.10 (a) and (b) show the cumulative total times for Workload 2. The results for

other workloads are not shown because MS and NumPy have similar performance trends

across all workloads. MS exhibits a slow growth in cumulative total time because it executes

all queries efficiently with the filter-verification query processing framework. However, it

incurs a start-up overhead due to the need to build indexes for all masks in the dataset ahead

of time. In contrast, NumPy has no start-up overhead but suffers from rapid growth in its

cumulative time because it does not reduce the required work for each query. Nevertheless,



104

the cost of building the indexes for MS is quickly amortized across the queries thanks to the

filter-verification query processing framework and the CHI technique. On both datasets, MS

outperforms NumPy after approximately 10 queries. MS-II strikes a good balance between MS

and NumPy, eliminating the start-up overhead while achieving comparable query execution

times to MS.

Figure 4.10 (c) and (d) show the ratio of cumulative total time between MS-II and MS

for all workloads on both datasets. We first discuss the results for Workload 1, 2, and 3. For

both datasets, we observe that this ratio grows rapidly at the beginning for Workload 1, 2,

and 3, and then peaks at around 10 to 20 queries before decreasing gradually. The initial fast

growth is due to the fact that for the first few queries, MS-II needs to answer them without

the help of indexes for the unseen masks targeted, which is similar to the behavior of NumPy,

and to build indexes for these masks. Among workloads, Workload 1 has the highest growth

rate in this ratio because it has the lowest pseen value, resulting in more unseen masks being

targeted during the first few queries and therefore forcing MS-II to build indexes for more

masks. Then, the ratio peaks at around 10 to 20 queries because, at this point, MS-II has

built indexes for all the masks in the dataset, and subsequent queries can be executed using

the filter-verification framework without index building. The peak ratio exceeds 1.0 because

MS-II must load the masks from disk and compute their CP values during query execution

the first time they are targeted. In contrast, MS utilizes pre-built indexes for all targeted

masks in all queries, which results in a lower cumulative total time. Then, after the peak, the

ratio decreases gradually because the cumulative total time for MS-II grows at a similar rate

to MS’s cumulative total time.

For Workload 4, on both datasets, MS-II never completes building the indexes for all

masks, as only 30% of the masks in the dataset (6683 for WILDS and 399,351 for ImageNet)

are eventually targeted by all the queries in this workload. As a result, after the rapid initial

growth, the ratio of cumulative total time plateaus. This ratio never reaches 1.0 because the

time spent by MS to build the indexes for the never-targeted masks is not amortized across

queries.
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Lastly, we note that users typically pause between queries to examine results. Hence,

MaskSearch can leverage this interval to compute indexes, yielding better user-perceived

latencies.

4.3.6 Real-World Use Cases

This section shows MaskSearch’s real-world utility.

Improving Model Performance with MaskSearch on WILDS. WILDS is a benchmark

designed to evaluate the robustness of ML models to distribution shifts [154]. We used

MaskSearch to help improve the performance of an image classification model for the

iWildCam dataset in WILDS by identifying images with spurious correlations and retraining

the model with these images added to the training set after augmentation. The model

we started from was a ResNet-50 model trained via empirical risk minimization (ERM)

downloaded from the WILDS repository. We first issued a query to MaskSearch to retrieve

the top-50 masks (and their corresponding images) that have the fewest salient pixels (i.e.,

pixel value > 0.8) in their object bounding boxes generated by YOLO [136]. The reason

for this query is that images with spurious correlations often contain salient pixels in the

background that the model may have learned to rely on; we would like the model to focus on

the foreground object instead. Without MaskSearch, this query would take more than 2

minutes; with MaskSearch, it took less than a second. We then augmented these images

by randomizing the pixels outside the bounding boxes of the objects and keeping the pixels

inside the bounding boxes unchanged [260]. We added the augmented images to the original

training set of iWildCam with their original labels and retrained the model for 2 epochs.

After retraining, we found that the model’s accuracy improved from 60% to 70% on the

held-out OOD test set of iWildCam, which is a 16.7% relative improvement.

Understanding Vision Foundation Models with MaskSearch for Ophthalmology

and Histopathology. We worked with a team of computational biologists who developed

vision foundation models for ophthalmology and histopathology [277]. They generated

gradient-based saliency maps [175] to study the features that the ophthalmology model
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learned to predict diseases in 3D optical coherence tomography (OCT) images. To understand

which images (2D OCT slices) contain the most signal and whether the signal learned by

the model aligns with domain expertise, they issued declarative queries to MaskSearch to

efficiently identify slices with the most (or fewest) salient pixels. They reported this process

would have been more tedious without MaskSearch, commenting “MaskSearch makes

our work much more efficient and allows us to focus on the analysis of the results rather than

waiting for the results to be computed.” They also noted that MaskSearch can be used

for histopathology where the entire whole-slide images have large digital resolutions (e.g.,

10K-100K × 10K-100K pixels) and models take patches of these images as input. These

patches are usually 256 × 256 in size, so the number of patches for a single image can be

up to 10K. MaskSearch can help them quickly identify the patches where there are likely

diseased regions (e.g., patches with a large number of salient pixels).

4.4 MaskSearch User Interface

To further demonstrate the usability of MaskSearch, we develop a graphical user interface

(GUI) for MaskSearch and designed a demonstration [272] that showcases MaskSearch’s

capabilities within real-world ML workflows, including a use case for improving model perfor-

mance on WILDS described in Section 4.3.6, a scenario for searching for images attacked by

adversarial perturbations described earlier in the chapter, and a scenario for investigating the

discrepancies between human attention and model saliency for fine-grained image classification.

In this section, we describe the MaskSearch GUI, as shown in Figure 4.11.

MaskSearch allows users to load and specify their models, datasets, and masks. This

process is followed by the automatic calculation and display of the model’s accuracy and a

confusion matrix where each clickable cell represents the images whose ground truth label

and predicted label are the corresponding row and column of the cell, respectively. For

example, cell (146, 17) represents images of class 146 that were classified as class 17. The

GUI shows the top-100 cells in terms of the number of misclassifications. As illustrated in

Step 1 in Figure 4.11, this functionality allows for detailed visualization of the images from
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Step 1

The accuracy is low! 
The model is not looking at 

the correct region to predict.

Class: 146 Meleagris Ocellata
Model Prediction Accuracy: 0.5

146 -> 17

Saliency Map146 -> 17

Saliency Map

Step 2 Step 3

I’d like to augment the dataset by randomizing 
the irrelevant pixels and retrain the model.

What are other images where the 
model made the same mistake?

Figure 4.11: An example workflow of using MaskSearch’s GUI. In Step 1, 146 → 17 means
that the image with a ground truth label 146: Meleagris Ocellata was misclassified as class
17: Panthera Onca. The images are from WILDS [154].

the selected cell (146, 17) with their corresponding masks. The initial data loading and the

confusion matrix cells are not presented in Figure 4.11.

Input Section. The Input Section is demonstrated on the left of Steps 2 and 3 in Figure 4.11.

It simplifies the creation and manipulation of search queries by providing a form that guides

users through specifying their query, including defining an optional ROI (full mask by default),

upper and lower bounds of the pixel value range, and choosing between different queries

such as Top-K Query, Filter Query, and Aggregation Query. The ROIs are provided by

the user, such as object bounding boxes generated by an off-the-shelf model. Based on

the aforementioned user-specified parameters, the GUI generates an SQL query shown in

the “Query Command” window, which allows users to inspect the formalized query and, if

necessary, directly modify the SQL query for their search. Clicking “Execution Detail” (which

needs to happen after clicking “Start Query”) triggers the GUI to show the number of masks

loaded from disk during query execution vs. the number of total masks.

Query Result Section. The Query Result Section, presented on the right of Steps 2 and 3

in Figure 4.11, displays the query results as a combination of images and their corresponding
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masks, dependent on the specific scenario. For example, in Step 2 of Figure 4.11, the returned

images are overlaid with their saliency maps and the object bounding boxes. The GUI also

offers users the ability to click and zoom in on the query results in a popup window.

Dataset Augmentation. The interface also incorporates a dataset augmentation feature, as

shown in Step 3 of Figure 4.11. This feature allows users to augment the returned images by

randomizing the pixels outside the ROI with the original labels. Such an approach is known

to guide the model to classify the images without relying on the randomized background

pixels and thus improve the model’s performance [260].

With the GUI, users can interactively explore image databases through mask properties

and efficiently issue queries to retrieve images (and their masks) of interest.

4.5 Summary

In this chapter, we introduced MaskSearch, a system that accelerates queries that retrieve

examples based on mask properties. By leveraging a novel indexing technique and an efficient

filter-verification execution framework, MaskSearch significantly reduces the masks that

must be loaded from disk during query execution. With an index 5% of the original dataset in

size, MaskSearch accelerates individual queries by two orders of magnitude and consistently

outperforms existing methods on various multi-query workloads.
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Chapter 5

TQP: QUERY PROCESSING ON TENSOR COMPUTATION
RUNTIMES

Database management system vendors have delivered constant performance improvement

for decades by evolving software to keep up with Moore’s law while influencing hardware

development through close relationships with manufacturers. While data volumes and

demand for analytics are growing faster than ever [250], the query performance improvement

on CPUs has slowed down [261]. However, the count of processor transistors has continued

to grow over the last decade, as hardware manufacturers adopted first multi-core CPU

architectures and then augmented their computing platforms with specialized components

such as GPUs, FPGAs, compression and encryption chips, digital signal processors (DSPs),

and neural network (NN) accelerators. Although data management system builders have

taken advantage of multi-core and SIMD instructions effectively [297, 216, 149], the explosion

in the number of specialized hardware components, each with different characteristics and

programming abstractions, makes it challenging to support all the exciting capabilities that

these new powerful devices can offer.

On the other hand, the tremendous demand for memory and computation in AI [102],

combined with the market fever for AI, is driving unparalleled investments in new hardware

and software for AI. Hardware makers (e.g., Intel [111], Apple [44], Xilinx [276], AMD [40]),

cloud vendors (e.g., Amazon [49], Microsoft [77], Google [138], Meta [96]), startups (e.g.,

Graphcore [6], Sambanova [12], Cerebras [4]), and car companies like Tesla [259] are investing

heavily in this space. Venture capitals alone are pouring nearly $2B a quarter on special

hardware for AI, aiming for a market expected to exceed $200B a year by 2025 [251]. On the

software side, companies and open source communities are rallying behind a small number of
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big efforts (e.g., PyTorch [10], TensorFlow [36], TVM [75]). The combination of investments

in specialized hardware and large software communities focusing on performance allows these

efforts to thrive. Our realization is that the machine learning (ML) community has made

hardware accelerators accessible to nonspecialists (e.g., data scientists). The fact that the

most popular ML frameworks are open-source, creates a virtuous cycle whereby any hardware

vendor interested in the ML space must support these frameworks well to get adoption. At

the same time, these large open source communities successfully tackle the labor-intensive

problem of providing specialized kernels for various hardware, e.g., a month after Apple M1

was announced, TVM outperformed Apple’s CoreML by 2× [258]. Hardware vendors can

directly improve the kernels’ performance or the hardware itself [23, 24, 27]. This further

helps adoption since the performance improves at each new software and hardware release.

We argue that the best path forward for analytical database management systems is

to embrace this tectonic shift and take advantage of the groundswell of new hardware and

software targeting AI workloads. To demonstrate the viability of this idea, we propose and

prototype a new query processor that runs SQL queries atop tensor computation runtimes

(TCRs) such as PyTorch, TVM, and ONNX Runtime [25]. We name our prototype Tensor

Query Processor (TQP). TQP transforms a SQL query into a tensor program and executes

it on TCRs. To our knowledge, TQP is the first query processor built atop TCRs. Careful

architectural and algorithmic design enables TQP to: (1) deliver significant performance

improvements over popular CPU-based data systems, and match or outperform custom-built

solutions for GPUs; (2) demonstrate portability across a wide range of target hardware

and software platforms; and (3) achieve all the above with parsimonious and sustainable

engineering effort.

The above might appear surprising as specialized hardware accelerators are notoriously

hard to program, requiring much customization to extract the best performance. Furthermore,

their programming abstractions differ sufficiently to make our goals of performance (G1),

portability (G2), and parsimonious engineering effort (G3) seemingly hard to reconcile.

However, the key is a compilation layer and a set of novel algorithms, which can map the
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classical database abstraction to the prevalent one in ML, i.e., mapping relational algebra to

tensor computations. This allows us to free-ride on existing labor-intensive efforts from the

ML community to port and optimize TCRs across all the new specialized hardware platforms.

The initial performance results are encouraging. On GPU, TQP is able to outperform

open-source GPU databases in terms of query execution time. On CPU, TQP outperforms

Spark [282], and it is comparable to a state-of-the-art vectorized engine, DuckDB [224], for

several queries. Furthermore, when ML model prediction and SQL queries are used in concert,

TQP is able to provide end-to-end acceleration for a 9× speedup over CPU baselines.

Pursuing our goals of portability and parsimonious engineering effort, we make a deliberate

decision to target existing tensor APIs rather than customize lower-level operators. This

decision potentially leaves some performance on the table but leads to a very sustainable

long-term play, as TQP benefits from any performance enhancement and optimization added

to the underlying software and hardware (e.g., [23]). To validate this proposition, we run

TQP on different hardware settings: from CPUs, to discrete GPUs, to integrated GPUs

(Intel and AMD), to NN accelerators (e.g., TPUs [138]), and web browsers. Furthermore,

TQP is able to run the full TPC-H benchmark on both CPU and GPU with just around 8,000

lines of code—this is quite an achievement considering that until 2021 no GPU database was

able to run all the 22 TPC-H queries [165].

Contributions. This chapter makes the following core contributions:

• We propose Tensor Query Processor (TQP) that comprises a collection of algorithms and

a compiler stack for transforming relational operators into tensor computations.

• With TQP, we demonstrate that the tensor interface of TCRs is expressive enough to

support all common relational operators.

• We evaluate the TQP approach extensively against state-of-the-art baselines on the TPC-H

benchmark.

Organization. The remainder of the chapter is organized as follows. Section 5.1 introduces

some background on TCRs. Section 5.2 summarizes the challenges and the design choices we
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make. Section 5.3 introducesTQP, and Section 5.4 describes the algorithms used to implement

several key relational operators with tensor programs. Experiments are in Section 5.5.

Section 5.6 discusses the limitations of the current TQP implementation. The chapter is

summarized by Section 5.7.

5.1 Background

In this section, we summarize the system support for tensor computation (Section 5.1.1), and

provide a taxonomy of the tensor operations used throughout the chapter (Section 5.1.2).

5.1.1 Tensor Computation Runtimes (TCRs)

The last years have witnessed an increase in the popularity of ML models based on NNs [105].

While in the heydays, these models were implemented manually in C++, data scientists

now can take advantage of several open-source ML frameworks simplifying the authoring

and deployment of NN models. TensorFlow [1] and PyTorch [207] are considered the most

popular of such frameworks.

ML frameworks follow a common architecture: at the top, they have a high-level Python

API1 where data is commonly represented as multi-dimensional arrays called tensors, while

computation is expressed as a composition of tensor operations embedded into the Python

language. At the lower level, they have a runtime and a dispatcher/compiler allowing to

run the tensor operations over different hardware backends such as CPU, GPU, and custom

ASICs, and using single node execution, distributed [167], or mobile/edge [107].

Modern ML frameworks allow running computation in an interpreted mode (often referred

to as eager execution), or in a compiled mode (graph execution), enabling code optimizations

such as common sub-expression elimination, operator fusion, code generation [20], and

removing Python dependency [264, 263]. Interpreted vs. compiled execution is a popular

dichotomy in query processing system implementations [148]. ML frameworks allow both

1Note that TCRs allow implementation in other languages too (e.g., Java [220], Rust [181], C# [98]).
Python is however the default language of choice by data scientists.
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modalities, and we explore the tradeoffs involved when using one versus the other. The

current limits of tensor compilers are discussed in Section 5.5.

We will refer to ML frameworks, runtimes [25, 2], and compilers as tensor computation

runtimes (TCRs) in the rest of the chapter.

5.1.2 Tensor Operations

TCRs provide hundreds of tensor operations. We provide a brief summary of the operators

used in TQP, organized by category. Since TQP is currently built on top of PyTorch, from

now on we will use the PyTorch naming convention. Note that similar tensor operations

can be found in other TCRs. Additionally, here we take the freedom to provide a different

taxonomy than the one found in the PyTorch documentation [222] and in previous work [157].

Creation. This category contains all operations used to create tensors, e.g., from numpy,

fill a tensor with specific elements (zeros, ones, empty, fill, arange) or create a tensor

using the same shape of another tensor (zeros like, ones like).

Indexing and slicing. This category involves operations for selecting one or more

elements of a tensor using the square bracket notation, or using indexing (index select), a

mask (masked select), or a range (narrow).

Reorganization. This category includes reshape, view, and squeeze that reorganize

the shape of a tensor (eventually by changing only its metadata). gather, scatter reorganize

the elements of a tensor using an index, while sort sorts its elements.

Comparison. eq, lt, gt, le, ge, isnan are operators in this category. Other operations

are where that implements conditional statements, and bucketize that implements binary

search.

Arithmetic. add, mul, div, sub, fmod, remainder are in this category. We also include

logical operators such as logical and, logical or, negative, and shift operations.

Join. This category allows to concat or stack multiple tensors.

Reduction. This category contains operations for calculating simple aggregates (sum, max,

min, mean), aggregates over groups (scatter add, scatter min, scatter max, scatter mean),
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logical reductions (all, any), as well as operations to build histograms (bincount, histc),

nonzero (returning the indexes of non-zero elements), unique and unique consecutive.

5.2 Query Processing on TCRs

In this section, we summarize the challenges (Section 5.2.2) and the design principles we

commit to (Section 5.2.3) when building TQP. First, we show how relational operators can

be implemented using tensor programs with an example (Section 5.2.1).

5.2.1 Relational Operators as Tensor Programs

TCRs operate over data represented as tensors. Tensors are arrays of arbitrary dimensions

containing elements of the same data type. 0d-tensors are referred to as scalars, 1d-tensors

as vectors, and 2d-tensors as matrices. For a tensor of n dimensions, its shape is an n-tuple

where each element i ∈ {0, 1, . . . , n} specifies the size of the i-dimension. For example, a

matrix with 10 rows and 5 columns is a 2d-tensor of shape (10, 5). This work only considers

dense tensors where each element is explicitly stored in memory.

ML practitioners implement programs (NNs) as a composition of operations over tensors.

While relational operations are commonly expressed as queries in a standalone language (e.g.,

SQL), tensor operations are embedded in a host language (e.g., Python), which is used to

implement control flows and etc. Next, we introduce examples of implementing a filter using

tensors.

Let us assume that we want to implement a simple filter condition over the l quantity col-

umn of the lineitem table: where l quantity < 24. First, we can represent l quantity

as a 1d-tensor of floating point numbers. We can then use the lt (less than) operator to

implement the filter condition (line 1 of Listing 5.1). lt generates a boolean mask which is

then used as a parameter of the masked select operator to generate the filtered version of

the l quantity column vector (line 2 of Listing 5.1). The program can be easily extended

over multiple conditions by intersecting the masks using logical and.
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Listing 5.1: Filter implementation using bitmaps.

1 mask = torch.lt(l_quantity, 24)

2 output = torch.masked_select(l_quantity, mask)

This implementation is almost identical to the Bitmap-based representation [199] of filters

in vectorized query processors [217, 225]. On CPU, TCRs have SIMD implementations

for several condition and intersection operators. An alternative is to use indexes rather

than masks. This is commonly referred to as Selection Vector representation [199, 232],

and can be similarly implemented using tensor operators lt, nonzero, and index select.

Listing 5.2 shows how a selection vector can be extracted from the mask using the nonzero

operation, returning the indexes of the valid rows (line 2). The output of the filter can then

be built by fetching the values of the rows whose indexes are in the selection vector. This is

implemented by index select on line 3 (where dim=0 is used to specify the indexes over the

row dimension will be used). Again, this implementation is quite close to the one used in

vectorized query processors [232], where, for example, the nonzero operation is implemented

using the COMPRESSSTORE instruction on AVX-512 CPUs.

Listing 5.2: Filter implementation using selection vectors.

1 mask = torch.lt(l_quantity, 24)

2 idx = torch.nonzero(mask)

3 output = torch.index_select(l_quantity, dim=0, mask)

Listing 5.3 shows another implementation of the filter using Python control flow. Here,

we iterate over all the elements of the input tensor and use a Python conditional statement.

This implementation does not take advantage of any tensor operation beyond creating the

output tensor.

Listing 5.3: Filter implementation using Python data-dependent control flow.

1 output = torch.zeros_like(l_quantity), j = 0
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2 for i in range(l_quantity.shape[0]):

3 datum = l_quantity[i]

4 if datum < 24:

5 output[j] = datum

6 j = j + 1

7 output = output[:j, :]

Table 5.1 shows the performance of the three implementations. Selection Vector is faster

than Bitmap in this case because the filter has a high selectivity. The implementation using

Python control flow is considerably slower, and GPU execution of Python control flow is

slower than CPU execution. This result highlights one of the design choices (Section 5.2.3)

we make in TQP: avoid the use of data-dependent code in Python.

5.2.2 Challenges

Implementing a query processor on TCRs requires overcoming several challenges. After all,

TCRs are built for authoring and executing NN models, not relational queries.

C1:Expressivity. Relational queries can contain filters with fairly complex expressions

(e.g., like, in), sub-queries, group-by aggregates, joins (e.g., natural, anti, semi, outer),

etc. It is not clear whether the tensor operations currently available in TCRs are enough to

support all these relational operators.

Table 5.1: Execution times of filter over ∼6M elements in interpreted (Torch) and compiled
(TorchScript) modes. The machine used was an Azure NC6 v2.

Implementation
CPU GPU

Torch TorchScript Torch TorchScript

Bitmap 36.6 ms 36.6 ms 2.9 ms 2.9 ms
Selection Vector 19.2 ms 18.2 ms 2.8 ms 2.8 ms

Python 23 s 22.7 s 200.3 s 200 s
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C2:Performance. Even if a relational operator is implementable using tensors, this does

not automatically lead to good performance, as the example in Listing 2 suggests. In fact, it

is not clear whether tensor programs can achieve good performance, beyond NNs.

C3:Data Representation. To use TCRs as execution engines, relational tables must be

transformed into a tensor representation. Previous approaches have explored this challenge

(e.g., [126]), but their cost of translation is not negligible. Furthermore, TCRs commonly do

not support strings or date data types.

C4:Extensibility. Running relational queries over TCRs makes running a query seamlessly

over different hardware (CPU, GPU, ASICs, etc.) and backends (single node, distributed,

edge, web browser, etc.) possible. A single monolithic compiler architecture does not work in

all situations, therefore TQP’s design must be flexible enough to address all these use cases.

5.2.3 Design Choices

When building TQP, we embrace the following design choices.

DC1:Avoid implementing data-dependent control flow in Python. As Table 5.1 suggests,

computation in TQP must use tensor operations as much as possible. Note that for loops

and conditionals over schema elements are acceptable (e.g., loops over the columns of a table).

This design choice allows us to address C2 and achieve G1.

DC2:Tensor-based columnar format for input tabular data. Relational data must be

transformed into the tensor format. To do this, TQP adopts a columnar representation of

tables, and considers each column in a table as a tensor. We provide more details on our

data representation in Section 5.3.1. This design choice addresses C3.

DC3:Adherence to TCRs’ API. This design choice is required for achieving G2 and G3.

In fact, if we start extending TCRs with new features and operators, eventually the system

will hinter portability and increase the engineering effort because we will have to support

them on any hardware. Hence, we take advantage of existing TCRs’ API rather than try to

extend them. With this design choice, we are also able to address C1.

DC4:Extensible infrastructure allowing easy integration with relational and ML frame-
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works. Having a flexible infrastructure is of paramount importance since we desire to ride the

wave of investments in ML. Therefore, we embrace an extensible architecture that allows dif-

ferent output target formats (e.g., PyTorch, ONNX), composed of a core compiler, pluggable

frontends (e.g., query parser and optimizer). This design choice addresses C4.

Note that some of the design choices were made specifically to address some of the

previously mentioned challenges. For instance, we aimed to address C4 with DC4, while we

can address the relational-to-tensor abstraction mismatch (C3) thanks to DC2. Finally, we

can avoid disastrous performance by embracing DC1. Next we introduce TQP.

5.3 Tensor Query Processor (TQP)

In TQP, relational operators and ML models are compiled into tensor programs using

a unified infrastructure, extended from Hummingbird [195, 189]. Here, we focus on the

relational operator part, as the ML part was described in [195].

TQP Overview. TQP’s workflow has two phases: (1) compilation: an input query is

transformed into an executable tensor program; (2) execution: input data is first transformed

into tensors, and then fed into the compiled program to generate the query result. Currently,

TQP uses vanilla PyTorch in the compilation phase as the implementation target for the

tensor programs. If necessary, PyTorch programs are lowered into different target formats for

portability or performance goals. The selection of the hardware device to target is generally

made in the compilation phase. Next, we first describe how TQP represents relational

data using tensors (Section 5.3.1), and then describe each phase in detail (Section 5.3.2 and

Section 5.3.3).

5.3.1 Data Representation

Before executing the query, TQP must convert the input (tabular) data to tensors. Databases

often manage and convert data into their own proprietary format, and TQP is no different.

TQP internally represents tabular data in a columnar format with virtual IDs [34], as
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Figure 5.1: TQP represents input tables in a columnar format with a 2d-tensor per column.

illustrated in Figure 5.1. Data for each column is stored as a (n ×m) tensor, where n is

the input number of rows, and m is the length required to store the values. The translation

logic is different depending on the column data type. For example, numerical columns (sid

in Figure 5.1) can be directly represented as (n× 1) tensors. The conversion of numerical

columns to tensors is often zero-copy. TQP represents date data in (n×1) numeric tensors as

the number of nanoseconds since some pre-defined epoch. In this case, (de)serialization may

be required depending on the source/target date representation. Finally, TQP represents

string columns using (n×m) numeric tensors, where m is the maximum character length

of any string for that column. Given a string, TQP stores a character per tensor column

and right-pads it with 0s if its length is smaller than m. We are actively working on adding

support for encoded data (e.g., bit packing, run-length encoding, dictionary encoding) and

more compact string representations [18].

5.3.2 Query Compilation

TQP’s compilation phase is composed of four main layers, as shown in Figure 5.2: (1) The

Parsing Layer (Section 5.3.2) converts an input SQL statement into an internal intermediate
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representation (IR) graph depicting the query’s physical plan, which is generated by an

external frontend database system. The architecture decouples the physical plan specification

from the other layers, therefore allowing for different frontends to be plugged in. (2) The

Canonicalization and Optimization Layer (Section 5.3.2) performs IR-to-IR transformations.

(3) The Planning Layer (Section 5.3.2) translates the IR graph generated in the previous layer

into an operator plan in which each operator is mapped into a tensor program implementation.

(4) The Execution Layer (Section 5.3.2), using the operator plan, generates an executor which

is the program that runs on the target TCR and hardware. Next, before describing each

layer in more detail, we give a quick overview of TQP’s intermediate representation (IR).

Intermediate Representation (IR)

The IR is a graph-based data structure. It consists of a list of operators and variables. Each

operator corresponds to a node in the graph, and it contains: (1) a list of input variables; (2) a

list of output variables; (3) an alias identifying the operator type (e.g., SparkSQLFilter,

SparkSQLSort and following the format ¡frontend name¿¡operator name¿) and (4) a reference

to the corresponding operator instance in the original physical plan. The latter is used to

instantiate the tensor program implementing the operator. For example, to create a filter,

TQP needs to access the expressions contained in the original physical operator.

Edges represent data (tensors) flowing between operators. In particular, an edge connects

an output variable from an operator to an input variable of another operator. A variable

contains: (1) a unique identifier, and (2) the corresponding frontend column name in the

original plan, which is used to translate expressions. When a variable is created, a unique

identifier is generated deterministically based on information available in the graph. Variables

in the IR are generated as follows. First, TQP generates a variable for each column in

the input table. Then, these variables can be used as input to many operators; however, a

new variable will always be created for the output of an operator. Thanks to this design:

(1) properties (e.g., sorting information) can be immutably attached to columns; (2) the IR is

easier to debug because variables, once defined, are never changed; and (3) TQP can detect
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122

at runtime when a column is not used anymore and safely garbage-collect it.

Parsing Layer

The goal of the Parsing Layer is to translate input queries into TQP’s internal IR. This

goal is accomplished in two steps: (1) input queries are parsed, optimized, and exposed as

frontend-specific physical query plans; and (2) a frontend-specific parsing logic translates the

physical plan into an IR plan.

In its current version, TQP supports queries expressed as Spark SQL statements, and it

uses the PySpark API to parse, optimize, and return the physical plan in a JSON format.

We plan to add support for Calcite [56], DuckDB [224], and Substrait [28]2. Then the Spark

parser constructs the internal IR version of the physical plan using a DFS post-order traversal.

If an unsupported operator is found in the plan, this phase will fail with an exception. The

list of operators supported by the IR is extensible (DC4).

Canonicalization and Optimization Layer

This layer implements IR graph transformations similarly to a classical rule-based optimizer.

Rules are applied to the IR graph in two stages. In the first stage, canonicalization, the rules

are used to eliminate any of the idiosyncrasies in the frontend system. For example, Apache

Spark returns a projection operator with no inputs for count * statements. In the second

stage, optimization, rules rewrite the IR graph to improve the performance of the query.

Examples of rewrite rules include pushing projection operators into filters or merging adjacent

aggregate and projection operators. While we did not explore in depth the optimization

space enabled by TQP’s design, we show that hand-optimized tensor programs are more

efficient than the one currently generated by TQP in Section 5.5.6.

2Note that we currently only support Apache Spark for relational frontends, but this is not a general
limitation. TQP, in fact, supports all the ML frontends available in Hummingbird [189].
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Planning Layer

In this layer, TQP transforms the optimized IR graph into an operator plan composed

of PyTorch tensor programs implementing each operator in the IR graph. In Section 5.4,

we describe some operator implementations in detail. The implementation of the Planning

Layer is straightforward. For each operator in the IR graph, TQP fetches the corresponding

implementation containing the tensor program from a dictionary, which is then instantiated

with the IR operator’s reference to the frontend physical operator instance.

Execution Layer

Here the operator plan is wrapped around a PyTorch executor object. This object is

responsible for: (1) calling the tensor programs in the operator plan following a topological

order; (2) wiring the output tensors generated by each program into the successive one; and

(3) keeping track of tensor references to garbage collect them if not used anymore. Once

the executor program is generated, TQP provides options to compile it into different target

formats in addition to PyTorch interpreted execution. Currently, TQP allows lowering the

executor into the TorchScript and ONNX formats, as well as to use TVM to compile it

directly into machine-level code. Note that not all queries can be compiled into all formats

since not all tensor operations are supported by all the target formats.

5.3.3 Query Execution

Once the executor program is generated, it can be executed over the input data. The program

automatically manages (1) converting data into the tensor format; (2) data movements to/from

device memory; and (3) scheduling of the operators in the selected device. Once the data is

in the proper format and on the desired device, all the operators are executed sequentially.

Regarding parallelization, TQP exploits the tensor-level intra-operator parallelism provided

by the TCRs. However, given the poor scalability performance (Section 5.5.3), we are

exploring support for inter-operator parallelism and data-parallel strategies. Once the



124

executor completes, TQP returns the query result in tensor, NumPy, or Pandas formats.

5.4 Operator Implementation in TQP

We described how TQP uses the Planning Layer to translate relational operators in the IR

graph into tensor programs. Here we provide an overview of a few program implementations.

TQP provides tensor-based implementations for the following relational operators: selection,

projection, sort, group-by aggregation (sort-based), natural join (hash-based and sort-based),

non-equi, left-outer, left-semi, and left-anti joins. TQP supports expressions including

comparison and arithmetic operations, functions on date data type, in, case, like statements,

as well as aggregate expressions using sum, avg, min, max, and count aggregates (with

and without distinct). Finally, TQP supports nulls, and sub-queries (scalar, nested, and

correlated), and predict UDF3 [187, 188]. With all the above, TQP is able to compile

and execute all 22 queries of the TPC-H benchmark (C1). Interestingly, to support the

full TPC-H benchmark, only the tensor operations listed in Section 5.1.2 are required, and

we did not have to introduce any additional custom tensor operators (DC3). Among all

the above operators, we describe how TQP implements relational expressions with tensor

operations (Section 5.4.1), and implementations for two representative operators: join (sort-

and hash-based, in Section 5.4.2 and Section 5.4.3, respectively), and group-by aggregation

(Section 5.4.4). Finally, note that the filter implementation in TQP is close to the Bitmap

representation described in Section 5.2.1.

5.4.1 Expressions

Relational expressions such as sum(l extendedprice ∗ (1 - l discount)) can be found

in projection operators, filter conditions, etc. In an expression tree, each leaf node represents

a column or a constant value (e.g., l extendedprice) and each branch node represents

an operator (e.g., ∗). TQP keeps an internal dictionary that maps operators to their

3While generic UDFs are hard to support in TQP because of data conversion and data representation
mismatches, Spark vectorized UDFs [19] can be supported on CPU.
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corresponding tensor operations, e.g., ∗ to torch.mul. To implement an expression with tensor

operations, TQP then performs a post-order DFS traversal on the expression tree. For each

node it encounters in the expression tree, TQP evaluates its subtrees recursively. For each leaf

node, TQP fetches (or generates) the proper column-tensor (constant value). For each internal

operator, TQP retrieves the corresponding tensor operation (or a series of tensor operations)

from the internal dictionary. In this way (and with the help of Python lambda functions), TQP

generates a chain of tensor operations representing the evaluation of the expressions. As an

example, from Q21 in TPC-H, the expressions o orderstatus = ‘f’ and receiptdate >

l commitdate is implemented as torch.logical and(torch.eq(o orderstatus,[70]),

torch.gt(l receiptdate,l commitdate)), where [70] is a 1x1 tensor storing the ASCII

value for the constant ‘F’.

5.4.2 Sort-Based Join

TQP adopts a late materialization strategy for joins, similar to the one commonly used in

columnar databases [35, 169]. TQP takes only the columns in the join predicate as input to

the join, and the output is a set of pairs of indexes identifying the records for which the join

predicate succeeds. The sort-based equi-join algorithm is shown in Algorithm 5.1, where, to

simplify the description, we describe the case in which two integer columns are joined. With

a few modifications, the algorithm is also able to support non-equi joins, left-semi joins, and

outer joins. In the pseudocode, we use the typewriter font (e.g., bucketize) to denote tensor

operations, and the capital font (e.g., createOutput) to denote class methods. Figure 5.3

further illustrates the algorithm.

First, TQP sorts the join-key columns from each table (lines 1 to 3 in Algorithm 5.1,

➊ in Figure 5.3). When multiple columns are used as join keys, TQP uses radix sort. If

the join keys are not integers, e.g., floating point numbers, string, and etc, TQP assigns a

unique integer to every unique join key (from both left and right) so that the corresponding

tuples should join if and only if the assigned integers match for two join keys. The details are

omitted in the pseudocode for brevity. Then, ➋, TQP builds two histograms for the join keys
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Algorithm 5.1 Sort-Based Join Implementation in TQP.

Input: data: input columns passed as an array of tensors.
Output: an array of tensors representing the join output.

1: left , right ← getJoinKeyColumns(data)
▷ Sort join keys
2: left , leftIdx ← sort(left)
3: right , rightIdx ← sort(right)
▷ Build histograms for the left and right key columns
4: leftHist , rightHist ← bincount(left), bincount(right)
▷ Compute the number of rows for each pair of matching keys
5: histMul ← mul(leftHist , rightHist)
▷ Compute the prefix sums of histograms
6: cumLeftHist ← cumsum(leftHist , dim = 0)
7: cumRightHist ← cumsum(rightHist , dim = 0)
8: cumHistMul ← cumsum(histMul , dim = 0)
▷ Initialize the output size and output offsets
9: outSize ← cumHistMul [−1]
10: offset ← arange(outSize)
▷ Find the bucket of matching keys to which each output belongs

11: outBucket ← bucketize(offset , cumHistMul)
▷ Compute the indexes from left and right in the join output

12: offset .sub (cumHisMul [outBucket ]− histMul [outBucket ])
13: leftOutIdx ← leftIdx [cumLeftHist [outBucket ] − leftHist [outBucket ]

+ div(offset , rightHist [outBucket ], rounding = “floor”)]
14: rightOutIdx ← rightIdx [cumRightHist [outBucket ]−rightHist[outBucket ]

+ remainder(offset , rightHist [outBucket ])]
15: return createOutput(data, leftOutIdx, rightOutIdx )

from left and right, respectively, i.e., TQP counts the number of occurrences for each unique

join key (line 4). Then, ➌ by multiplying the values (element-wise) of the histograms (line 5),

TQP computes the bucket sizes: the number of output rows for each matching join key from

left and right. Afterward, TQP computes the prefix sums for the left and right histograms

(➍), as well as their element-wise multiplication (➎) (lines 6 to 8). The prefix sums will be

used later to retrieve, from each join output, the position in left and right. The total size

of the output of the join is then computed as the last element of the prefix sum containing

the bucket sizes (line 9), and ➏ TQP generates an index array (offset) of the same size
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Figure 5.3: An example of the sort-based join implementation in TQP.

(line 10). Then, ➐ TQP performs a parallel binary search on the prefix sum containing the

bucket sizes to find the matching join key (bucket) to which each row in the output of the

join belongs (line 11). Next, ➑ TQP computes the indexes from left and right that generate

each row in the output of the join. Figure 5.3 shows the computation process for row 8 in

the join output of the example. To compute the indexes from left and right that are part

of a given offset in the output of the join, TQP first subtracts offset by the prefix sum of

bucket sizes prior to the current bucket (line 12). Now offset becomes the offset in each

bucket of the matching join keys. TQP then adds to the offset the previous bucket from the
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respective prefix sum histogram (cumLeftHist and cumRightHist, respectively), and adds the

result (quotient for leftOutIdx, remainder for rightOutIdx ) of offset divided by the number of

join keys from right in the current bucket of matching join keys (lines 13 to 14). Finally, for

each row in the join output, TQP knows which rows from left and right contributed to it. It

then generates the join output (line 15, not depicted in Figure 5.3). It is important to note

that all computations in this join implementation are achieved using tensor operations, with

only minimal usage of Python code.

5.4.3 Hash-Based Join

The hash equi-join algorithm is shown in Algorithm 5.2. The definition of the input and

output here is the same as in Section 5.4.2. The algorithm is similar to the classical hash

join algorithm, except that the build and probe phases are interleaved and repeated as many

times as the maximum number of elements that share a hash value (line 6). The algorithm is

as follows: TQP first generates the indexes (line 2) and the hash values (line 3) for the left

and right tables. Afterward, TQP computes a histogram over the table on which the hash

table will be built (left in this case, line 4) and checks the maximum number of elements in a

hash bucket (line 5). Then, TQP repeatedly builds a hash table (lines 7 and 8) and probes it

(lines 11 to 14) to find matching keys (lines 15 to 17). Matching keys are accumulated across

iterations (lines 18 and 19). In each iteration, TQP also keeps track of the indexes that are

stored in the hash table such that they will not appear in subsequent iterations (lines 9 and

10). To achieve this, let m be the hash table size; TQP appends an additional (m + 1 )-th

bucket to the hash table and uses it to redirect the already scattered indexes. Note that

when there are no hash collisions, TQP skips the logic of lines 9 to 10 and 18 to 19. This

path is therefore close to the optimal.

Compared to the sort-based join, when there are no hash collisions, this implementation

is around 30% to 50% faster on CPU and 2× faster on GPU. When there are hash collisions,

it is faster than the sort-based join for cases in which at most around 15 elements share a

hash value; when there are more than 15 elements sharing a hash value, the sort-based join is
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Algorithm 5.2 Hash-Based Join Implementation in TQP.

Input: data: input columns passed as an array of tensors.
Output: an array of tensors representing the join output.

1: left , right ← getJoinKeyColumns(data)
2: leftIdx , rightIdx ← arange(left .shape[0 ]), arange(right .shape[0 ])
▷ Compute the hash values for join keys (m is the max hash table size)
3: leftHash, rightHash ← remainder(left ,m), remainder(right ,m)
▷ Build the histogram of hash values for the left join keys
4: hashBincount ← bincount(leftHash)
5: maxHashBucketSize ← max(hashBincount)
▷ Build and probe the hash table in an interleaved way
6: for i ∈ range(maxHashBucketSize) do
7: hashTable ← full((m + 1, ),−1)
8: hashTable.scatter (0, leftHash, leftIdx )
▷ Skip those scattered for future iterations by setting their hashes to m
9: leftIdxSct ← masked select(hashTable, hashTable ≥ 0)
10: leftHash[leftIdxSct ]← m
▷ Probe the current hash table and get the left and right indexes

11: leftCandIdx ← hashTable[rightHash]
12: validKeyMask ← leftCandIdx ≥ 0
13: validLeftIdx ← masked select(leftCandIdx , validKeyMask)
14: validRightIdx ← masked select(rightIdx , validKeyMask)
▷ Find the indexes that have matching join keys

15: matchMask ← left [validLeftIdx ] == right [validRightIdx ]
16: leftMatchIdx ← masked select(validleftIdx ,matchMask)
17: rightMatchIdx ← masked select(validrightIdx ,matchMask)
▷ Append the indexes to the global results

18: leftOutIdx ← cat((leftOutIdx , leftMatchIdx ))
19: rightOutIdx ← cat((rightOutIdx , rightMatchIdx ))

20: return createOutput(data, leftOutIdx , rightOutIdx )

faster. We are currently working on a partitioned hash-join implementation.

5.4.4 Aggregation

Algorithm 5.3 shows the pseudocode of the aggregation implementation. First, TQP horizon-

tally concatenates the values of the group-by columns (lines 1 and 2). TQP then sorts the

values of the concatenated columns using radix sort and permutes all the input data columns
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Algorithm 5.3 Aggregation Implementation in TQP.

Input: data: input columns passed as an array of tensors.
Output: the aggregation output as an array of tensors.

1: grpByCols ← getGroupByColumns(data)
▷ Generate unique groups
2: grps ← cat(grpByCols , dim = 1)
3: grps , grpsInvIdx ← sort(grps)
4: data ← [col [grpsInvIdx ] for col in data]
5: grpsUnique,invIdxs←uniqueConsecutive(grps , inverse=True)
▷ Evaluate the aggregation expression
6: return [evaluate(data, grpsUnique, invIdxs)]

according to this sorted order (lines 3 and 4). Using uniqueConsecutive, TQP eliminates

all but the first key from every consecutive group of equivalent keys. Concurrently, TQP

computes the inverted indexes that indicate in which bucket (identified by a unique key) each

row in the sorted list ends up (line 5). Finally, with the unique key list and inverted indexes,

TQP evaluates the aggregate expression for all groups. This last operation makes use of the

expression generated (at compile time) as described in Section 5.4.1.

5.5 Evaluation

Key questions. The evaluation aims to answer the following key questions:

• On CPU, is TQP’s performance comparable to other data processing systems on a single

core (Section 5.5.1)?

• On GPU, is TQP’s performance comparable to other GPU databases (Section 5.5.2)?

• How well does TQP scale with the increase in the number of CPU cores and dataset sizes

(Section 5.5.3)?

• What is the cost/performance tradeoff of TQP on GPU (Section 5.5.4)?

• Which operation takes the most time in query execution (Section 5.5.5)?

• Can hand-optimized query plans improve TQP’s query time (Section 5.5.6)?

• Can TQP accelerate workloads mixing ML and relational queries (Section 5.5.7)?



131

• What are the overheads (Section 5.5.8)?

• Can TQP run over different hardware and software backends while minimizing the

engineering effort (Section 5.5.9 and Section 5.5.10)?

Baseline systems. Our goal is to compare TQP with state-of-the-art query processing

systems for different hardware settings. Specifically, for CPU execution, we compare TQP

with Apache Spark [282] (recall that Spark and TQP share the same query plans) and

DuckDB [224]: a state-of-the-art vectorized engine. For GPU execution, we compare TQP

with two well-known open-source GPU databases: BlazingSQL [3] and OmnisciDB [7].

Hardware and software setup. For all the experiments (except when noted otherwise),

we use an Azure NC6 v2 machine with 112 GB of RAM, an Intel Xeon CPU E5-2690 v4 @

2.6GHz (6 virtual cores), and an NVIDIA P100 GPU (with 16 GB of memory). The machine

runs Ubuntu 18.04 with PyTorch 1.11, torch-scatter 2.0.9, BlazingSQL 21.8.1, PySpark 3.1.1,

OmnisciDB 5.9.0, DuckDB 0.4.0, RAPIDS 21.08, CUDA 10.2, TVM 0.8 and scikit-learn

0.21.3.

Experimental setup. We use the TPC-H benchmark [79] which consists of 22 queries. We

use the parameters specified in the query validation sections in [79]. We generate data at

different scale factors from 1 to 10 where 1 means 1 GB of input data in total using the dbgen

tool from the TPC-H benchmark. Note that some queries can run on scale factors larger

than 10 in GPUs, thanks to TQP’s ability to push projections into data conversion. We are

working on supporting out-of-memory computation by leveraging PyTorch’s DataLoader [21].

We load the generated data from disk into Pandas dataframes. All dataframes use the data

types as specified in the benchmark, except for decimals: we use doubles for all systems since

TQP does not support decimals yet. Subsequently, we register/convert each dataframe into

each system’s internal format, e.g., Spark dataframes for Spark4, PyTorch tensors for TQP,

CUDA dataframes for BlazingSQL, etc., and move the data to the GPU, when applicable.

We measure the total query execution time, including the time for generating the output.

4For Spark, we additionally load the working datasets in memory using cache.
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For each experiment, we do 10 runs where the first 5 are for warm-up. The reported numbers

are median values of the last 5 runs.

Key takeaways. The key evaluation results are as follows:

• TQP’s query execution time on CPU using a single core is better than Spark’s over the

same physical plans.

• TQP’s scalability on CPU is poor because of PyTorch lacking parallelization in some

operators’ implementation and its intra-operator parallelism model.

• TQP is, in general, slower than DuckDB on CPU, but for several queries, TQP is

comparable or even better.

• Hand-optimized plans can improve TQP’s performance, which suggests that a TCR-aware

query optimizer is required to achieve the best performance.

• TQP’s query execution time on GPU is usually better than both BlazingSQL’s and

OmnisciDB’s, and TQP supports more queries in TPC-H than they do.

• When ML model prediction and SQL queries are mixed together, TQP is able to provide

end-to-end acceleration which delivers up to 9× performance improvement over CPU

baselines.

• TQP on GPU performs favorably, and the query time speedup justifies the dollar cost

increase compared to CPU-only systems.

• TQP can run queries on different hardware and software backends (including integrated

GPUs and web browsers), with orders of magnitude fewer lines of code required, compared

with the baseline systems.

5.5.1 Single Core Execution on CPU

In this first experiment, we use a single CPU core and TPC-H at scale factor 1. The results

are shown in Table 5.2 (under CPU). We compare Spark and DuckDB vs. TQP, using both

interpreted (TQP) and compiled execution with TorchScript (TQPJ). Spark, DuckDB, and

TQP can support all 22 queries.
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Table 5.2: Query execution time (in seconds) on the TPC-H benchmark (scale factor 1). Bold
numbers highlight the best performance for the specific setup (CPU or GPU). We evaluate
TQP in two modalities: interpreted (TQP) and compiled using TorchScript (TQPJ). N/A
means the query execution did not finish because of an error. TQPJ currently does not
support materialized views.

Query
CPU (1 core) GPU

Spark DuckDB TQP TQPJ Blazing Omnisci TQP TQPJ

Q1 2.261 0.664 7.535 7.301 0.216 0.095 0.027 0.026
Q2 8.751 0.101 0.629 0.577 0.238 0.351 0.039 0.028
Q3 3.669 0.273 1.154 1.165 0.128 0.293 0.027 0.024
Q4 4.719 0.216 1.050 1.087 0.093 0.292 0.020 0.018
Q5 6.963 0.302 2.459 2.963 0.164 0.064 0.048 0.042
Q6 0.381 0.156 0.143 0.073 0.045 0.047 0.003 0.002
Q7 5.569 0.430 2.236 1.931 0.244 0.067 0.042 0.035
Q8 4.034 0.278 2.460 2.503 0.215 0.079 0.050 0.039
Q9 17.61 2.533 4.518 4.616 0.569 0.072 0.105 0.092
Q10 15.98 0.430 1.168 1.184 0.173 0.740 0.057 0.052
Q11 1.047 0.034 0.476 0.324 N/A 0.084 0.016 0.009
Q12 4.063 0.309 0.976 0.966 0.069 0.062 0.025 0.021
Q13 6.081 0.181 9.379 9.197 0.303 0.069 0.153 0.136
Q14 0.509 0.171 0.124 0.096 0.076 N/A 0.007 0.005
Q15 2.640 0.291 0.133 N/A N/A 0.086 0.129 N/A
Q16 16.94 0.093 3.664 3.699 N/A 3.689 0.320 0.301
Q17 3.165 0.381 2.303 2.466 0.121 0.132 0.061 0.051
Q18 6.942 0.765 2.245 2.406 0.204 0.593 0.053 0.048
Q19 2.300 0.419 1.577 1.316 0.188 0.058 0.042 0.036
Q20 4.232 0.276 2.032 1.975 0.149 N/A 0.048 0.041
Q21 12.39 0.932 25.49 24.25 N/A N/A 0.158 0.151
Q22 3.919 0.069 0.315 0.296 N/A N/A 0.011 0.010

In terms of query time, TQPJ is either comparable to TQP or better. This is because

TorchScript removes Python code dependency and provides optimizations not offered by

vanilla PyTorch [91]. TQP outperforms Spark for most queries, sometimes by an order

of magnitude (e.g., Q10, Q15, and Q22). Given that TQP uses the same physical plans
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(a) Query execution time over different numbers of cores.

(b) Query execution time over different scale factors.

Figure 5.4: Scalability on selected queries from TPC-H. For TQP, we report the best time of
the interpreted (PyTorch) and compiled (TorchScript) versions. In (a), the scale factor is 1.
In (b), all CPU methods use 6 cores. BlazingSQL throws errors for Q9 at scale factors 2, 5,
and 10. OmnisciDB does not support Q14. The y-axes in (b) are in (symmetric) log scale.

as Spark, this suggests that the tensor abstraction is indeed good for executing relational

queries. The practical reasons are: (1) TQP is column-oriented, while Spark is row-oriented.

This makes the former better suited for analytical queries; (2) some tensor operations use

SIMD instructions, while Spark does not exploit vectorization; (3) in TQP, tensor operations

are implemented in C++, while Spark is Java-based; (4) Spark is designed as a scale-out
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system. For queries (i.e., Q1, Q13, and Q21) where TQP is slower than Spark, the reasons

are: (1) TQP’s left anti-join and left outer-join implementations are not optimized; (2) the

performance of the uniqueConsecutive operator in PyTorch is not optimal. Finally, we

compare TQP against DuckDB, a state-of-the-art vectorized execution engine. TQP has

better performance than DuckDB only for 3 queries. For the other queries, DuckDB clearly

outperforms TQP. If we exclude Q1, Q13, and Q21 (discussed above), TQP’s query times are

within the same order of magnitude as DuckDB’s. To evaluate whether this poor performance

compared with DuckDB is due to bad query plans or the tensor abstraction, we hand-code

better query plans and tensor programs in Section 5.5.6 and show that TQP can match and

even outperform DuckDB on CPU.

5.5.2 Execution on GPU

In this experiment, we evaluate the performance of TQP on GPU. The results are shown in

Table 5.2 (under GPU). Starting from TQP vs. TQPJ, as in the CPU case, TQPJ outperforms

TQP. Compared with the baselines, TQP (interpreted or compiled) outperforms BlazingSQL

(Blazing in the table) for all the queries, and it outperforms OmnisciDB (Omnisci in the

table) on 15 queries out of the 18 queries supported by OmnisciDB. For the remaining 3

queries, TQP achieves query times within a factor of 2 from OmnisciDB. Note that TQP

supports all 22 TPC-H queries, while BlazingSQL and OmnisciDB only support 17 and 18

queries, respectively.

Finally, if we compare the best CPU performance versus the best GPU ones, in general,

we see that the query times on GPU are 1.5× to 48× better than the CPU ones (single core),

except for Q16 where DuckDB is about 3× faster than the best-performing GPU system.

This somehow counter-intuitive result is due to the fact that, at scale factor 1, GPU resources

are not completely saturated. Therefore, it makes sense to explore how these systems scale

with more data and more available core. This is what we explore next.
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5.5.3 Scalability

For this and the following experiments, we select a representative set of queries: complex

aggregation (Q1), joins and filters (Q2), simple filters (Q6), complex joins (Q9), simple join

and aggregation (Q14), a complex mix of join, aggregation, and sub-queries (Q18).

Scaling the Number of Cores

In this experiment, we scale the number of available CPU cores from 1 to 6 over TPC-H

at scale factor 1. Figure 5.4a compares the scaling performance of Spark, DuckDB, and

TQP. Spark has the best scalability trend lines almost for all queries. DuckDB also scales

well. TQP’s scaling performance is, however sub-optimal, and for some queries increasing

the number of cores provides no benefits. There are two reasons: (1) PyTorch uses intra-

operator parallelism , which is not as efficient as the shuffle [282] or morsel-based [166]

approaches in Spark and DuckDB, respectively; (2) some PyTorch operators run on a single

core (e.g., torch.unique() and torch.unique consecutive() [223] used in aggregation).

We are investigating how to overcome this limitation by adding data-parallel support to

TQP leveraging PyTorch Distributed Data Parallel [167, 26] or by adding parallel operator

implementations.

Scaling the Data

In this experiment, we scale the dataset from 1 GB to 10 GB. In Figure 5.4b, we compare

the scalability performance of CPU implementations running over 6 cores (Spark, DuckDB),

as well as GPU systems (BlazingSQL and OmnisciDB). In general, we see that TQP CPU

scales the worst for almost all queries (only Spark is worst for Q6 and Q14), while GPU

systems scale better than the CPU ones. For Q1, OmnisciDB provides the best performance,

followed by TQP GPU. For Q2, Q14, and Q18, TQP GPU has the best performance, while

for Q6, TQP GPU is comparable to OmnisciDB. Finally, for Q9, OmnisciDB has the best

performance. Q9 has six joins, and OmnisciDB is able to better use the GPU resources. This
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Figure 5.5: Cost/performance tradeoff for TQP on selected queries at scale factor 10. We
plot the speedups of TQP on various GPUs (NVIDIA T4, P100 and V100) over DuckDB on
a baseline CPU-only machine. The dashed lines represent the query time speedups required
by the GPU executions to be more cost-effective compared to the DuckDB CPU baseline.

query is memory-bound, and the memory bandwidth of the P100 makes it much faster on

GPU than on CPU.

5.5.4 Cost/Performance Tradeoff

We now provide a cost/performance analysis of TQP on GPU compared to a CPU-only

baseline. Specifically, we select a general-purpose (CPU-only) VM in Azure with a dollar

cost similar to the cheapest VM equipped with GPU (NC4as T4 v3), and with a similar

main memory size. Following these constraints, we select a D2ds v5 with 8 CPU cores and

32 GB of memory. Then we compare the performance of DuckDB on the D2ds v5 with

TQP on (1) NC4as T4 v3 (with an NVIDIA T4 GPU, about 15% more expensive than the

CPU-only machine), (2) NC6s v2 (with an NVIDIA P100, around 4.6× more expensive than

the CPU-only VM), and (3) NC6s v3 (with an NVIDIA V100, around 6.6× more expensive

than the CPU-only VM). For each GPU VM type, we show the query time speedup required

to be more cost-effective than the DuckDB baseline. That is, for the T4, the speedup provided

by TQP has to be more than 15% to justify the cost increase of the T4 VM compared to the
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(a) Query time breakdown for tensor operators on CPU

(b) Query time breakdown for tensor operators on GPU

Figure 5.6: Query time breakdown for tensor operators for selected TPC-H queries at scale
factor 10.

DuckDB CPU baseline, 4.6× for the P100, 6.6× for the V100. The results for scale factor 10

are shown in Figure 5.5 for a few representative TPC-H queries. As shown, TQP on GPU is

more cost-effective compared to DuckDB on the CPU-only machine: for 6 of the 6 selected

queries (17 of the 21 supported queries5 in the full TPC-H) for the T4; 5 of 6 (10 of 21 in the

full TPC-H) for the P100; and 5 of 6 (9 of 21 in the full TPC-H) for the V100.

5OOM errors occurred when TQP ran Q21 at scale factor 10 on these GPUs.
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Figure 5.7: GPU utilization breakdown for selected TPC-H queries at scale factor 10.
Utilization varies by query. Runtime is the time spent in scheduling the kernels.

5.5.5 Performance Breakdown

In this experiment, we show the major contributing factors to the query execution time. TQP

is integrated with TensorBoard [14], which provides performance breakdowns and makes it

easy to spot bottlenecks [48]. We start by looking into which tensor operators are responsible

for the majority of the execution time. Figures 5.6a and 5.6b show the breakdown for a few

selected queries on CPU and GPU, respectively. Interestingly, even if TQP uses the same

algorithms on both CPU and GPU, the same query can show different operator contributions.

For example, for Q1 on CPU, most of the time is spent on computing the unique elements,

while on GPU, most is spent on scatter add. This is because the quality of the operator

implementations is different for CPU and GPU. Across queries, on CPU and GPU, the

majority of time is also spent on different operators. On CPU, most queries are bounded by

unique operators, masked select, and indexing; on GPU, most of the time is spent on sorting,

unique and nonzero. These observations suggest that: (1) the quality of kernels differs between

CPU and GPU, e.g., after further investigation, we find that the GPU implementation of

scatter add is not optimal, and nonzero requires host/device synchronization [29] (however,

we believe that over time the community will fix such performance issues); and (2) it might
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be worth investigating backend-aware tensor algorithms.

Finally, we report the GPU utilization for the same set of queries in Figure 5.7. As we can

see, each query has different utilization characteristics. For instance, Q1 contains complex

aggregation, and it spends 87% of the time on kernel execution; conversely, Q6 and Q14 are

simple queries, and most of the time is spent allocating GPU memory. Finally, Q2 spends a

considerable amount of time in generating the output on CPU.

5.5.6 Hand-Optimized Plans

Table 5.3: Query execution time (in seconds) on selected TPC-H queries (scale factor 10).
TQP Hand-Opt. uses hand-optimized tensor programs. We use Torch, JIT, and TVM to refer
to execution using PyTorch (interpreted), TorchScript (compiled), and TVM, respectively.
Bold numbers highlight the best performance for the specific setup: CPU (1 core), CPU (6
cores), or GPU.

TPC-H Query

CPU (1 core) CPU (6 cores) GPU

Best Baseline
TQP Hand-Opt.

Best Baseline
TQP Hand-Opt.

Best Baseline
TQP Hand-Opt.

Torch JIT TVM Torch JIT TVM Torch JIT TVM

Q1 6.54 (DuckDB) 5.97 6.89 N/A 1.1 (DuckDB) 4.68 5.17 N/A 0.17 (OmnisciDB) 0.13 0.13 N/A
Q6 1.5 (DuckDB) 0.87 1.18 0.24 0.25 (DuckDB) 0.66 0.71 0.12 0.02 (OmnisciDB) 0.01 0.01 0.06
Q9 45.11 (DuckDB) 19.34 18.66 N/A 7.75 (DuckDB) 14.59 13.83 N/A 0.14 (OmnisciDB) 0.45 0.44 N/A
Q14 1.7 (DuckDB) 0.52 0.49 0.47 0.33 (DuckDB) 0.12 0.10 0.16 0.12 (BlazingSQL) 0.01 0.01 0.30

Next, we study whether TQP’s performance can be improved with a better optimizer

that can generate better tensor programs. To understand this, we hand-optimize the tensor

programs for a few selected queries similarly to what a reasonable optimizer with knowledge

about cardinalities and tensor characteristics would do, e.g., avoid sorting (or computing

unique values) over already sorted (or made unique) columns, and select better join imple-

mentations. The results are shown in Table 5.3, where we report the best baseline for each

setting (CPU 1 and 6 cores, and GPU), and over three execution modes: interpreted PyTorch

(Torch), compiled TorchScript (JIT), and compiled using TVM. TVM only supports Q6 and

Q14.
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If we focus on the CPU numbers first, TQP’s performance is comparable to or even better

than that of DuckDB’s, while TQP was much slower compared to DuckDB both on single-

and multi-core execution when not using the hand-optimized plans. TQP is now faster

than DuckDB for all queries over 1 CPU core, and two queries over 6 CPU cores. For some

queries, TQP is faster than DuckDB by a large margin, e.g., for Q6, 1-core TVM execution

is 6× faster. This is because TVM uses code generation and operator fusion to minimize

intermediate data materialization across operators. When scaling to 6 cores, TQP scales

well only for Q14, while DuckDB scales linearly. For the other queries, TQP’s query times

improve by at most 2×. This again shows the limitations of PyTorch’s scalability on CPU,

which cannot be improved by only using better tensor programs.

Finally, on GPU, we see that OmnisciDB has still better performance for Q9, although

TQP’s query time for Q9 on GPU improves by 4×, when using the hand-optimized plans.

This is because TQP’s aggregate implementation heavily uses sorting, while OmnisciDB uses

hash-based implementations.

5.5.7 Prediction Queries

We now investigate the performance benefits of using a unified runtime for queries mixing

relational and ML operators. We use prediction queries as a use case, i.e., queries embedding

a trained ML model performing predictions over some input data [188]. Recall that TQP

natively supports predictions of any PyTorch model (e.g., NNs), and traditional ML models

through its integration with Hummingbird [195]. Here, we join the customer and orders

tables in TPC-H (scale factor 10), and train a gradient boosting tree model (with 128

trees with max depths of 8) over a mix of categorical (c orderstatus) and numerical

features (c custkey, c nationkey, c acctbal, sum(o totalprice)) after we apply

one-hot encoding and feature scaling, respectively. We run a prediction query using the

trained model over the query with two filter predicates added (c mktsegment = ‘building’

and o orderdate >= date ‘1993-10-01’). Note that this prediction query mixes ML

operators (tree ensemble, one-hot encoding, scaling, and concatenation) with relational ones
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Figure 5.8: Query time on a query mixing ML model prediction and relational operators. In
parenthesis shows the number of CPU cores. The x-axis is in (symmetric) log scale.

(join, aggregation and filtering). We compare TQP with two baselines: one where the

prediction query is executed over Spark (MLlib [184] is used to build the model), and one

where we use DuckDB for the relational part and scikit-learn [212] for the ML part6. Since

TQP subsumes Hummingbird, it is able to compile both the ML and the relational operators

of the query into a unified plan executable on TCRs. Figure 5.8 shows the result. For

CPU single core, TQP is about 40% faster than Spark, while DuckDB with scikit-learn is

about 7× faster than TQP. When enabling all cores, Spark and DuckDB scale much better

than TQP, for the reasons described in Section 5.5.3. Finally, TQP is able to exploit GPU

acceleration end-to-end, which brings a 9× improvement of query time compared to the best

CPU baseline.

5.5.8 Overheads

Next, we evaluate the overheads of TQP for both CPU and GPU. The breakdown of the

end-to-end execution with all overheads is shown in Figure 5.9. Note that: (1) data conversion

6Note that moving data from DuckDB to scikit-learn is zero-copy since DuckDB can directly return data
in Pandas dataframe format [22].
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(a) End-to-end execution breakdown on CPU

(b) End-to-end execution breakdown on GPU

Figure 5.9: End-to-end execution time breakdown (incl. all overheads, and w/o pipelining
and caching) for selected queries at scale factor 10.

is done once and many databases (e.g., BlazingSQL, OmnisciDB, Spark, SQL Server, etc.)

requires it; (2) TQP pipelines data movement (to the GPU) with query execution (non-

blocking IO), while for this experiment we explicitly make data movement blocking; (3) the

machine in this experiment uses PCIe 3 which is 4× slower than the latest version, PCIe 5;

(4) query compilation can be cached, but here we report the full query compilation time as

the sum of the time for the frontend database to generate the physical plan, and the time for

TQP to generate the final executable tensor program.

If we focus first on the CPU side (Figure 5.9a), compilation and data conversion take

the majority of the time only for simple queries (e.g., Q6), while for the other queries, the
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majority of the time is spent on the query execution. However, in the GPU case (Figure 5.9b),

except for Q2 and Q9, the majority of the time is spent on data operations (conversion and

movement) and compilation. However, in practice, as described above, these overheads are

hidden (e.g., data movement using pipelining) or are one-time overheads (data conversion and

query compilation). Regarding query compilation, 90% of the time is spent initializing the

PyTorch models from the Spark plans, and we are currently investigating how to speed up

this process. Finally, using TorchScript adds substantial compilation overheads since queries

are traced using input samples.

Table 5.4: Query time (in milliseconds) of TPC-H Query 6 (scale factor 1) using the hand-
optimized plan over different hardware and software backends. In parenthesis is the TCR
used as well as the compilation stack (when applicable).

Intel UHD Graphics 630 AMD Radeon Pro 5300M NVIDIA K80 NVIDIA V100 TPU Chrome
(TVM on Metal) (TVM on Metal) (PyTorch) (PyTorch) (PyTorch on XLA) (ORT on WASM)

62 17 5 1 25 1900

5.5.9 Portability

To evaluate whether TQP can run on different hardware and software backends, we run

TPC-H Query 6 with the hand-optimized plan on: (1) two integrated graphic cards, one

from Intel, and one from AMD; (2) two discrete GPUs from NVIDIA (K80 and V100: the

former a generation before the P100 GPU used for the experiments in the previous sections;

the latter one, one generation after); (3) a custom ASIC used for NN training and inference

(TPU); and (4) a web browser. We use a scale factor of 1. The results are shown in Table 5.4.

This experiment proves the versatility of TQP. For the integrated GPUs, we use TVM to

code-generate the query using Metal [45]. For the two discrete GPUs, we use vanilla PyTorch,
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while for the TPU, we use the XLA backend for PyTorch7 [221]. Finally, we are able to run

the query in the browser by exporting it into the ONNX format and running it in Chrome

using ONNX Runtime (ORT) for WebAssembly (WASM) [190].

5.5.10 Engineering Effort

To demonstrate the minimal engineering effort required by TQP to run queries over different

hardware, we compare the lines of code for a few relational operators (hash and sort-based

joins, aggregation) across all evaluated systems. For each relational operator and each system,

we use cloc [81] to count the lines of source code (excluding comment and blank lines) from the

files containing the algorithmic functionality of the operator. This is admittedly a subjective

process, but we believe the numbers of lines of code can roughly reflect the engineering

effort required to implement relational operators in each system. Table 5.5 shows the results.

Compared with the baselines, TQP requires significantly lower engineering effort: up to 10×

less compared to CPU implementations, and 50× less compared to GPU ones. It is worth

noting that TQP is able to target different hardware with the same implementation, so the

engineering effort required for TQP to scale over different hardware is constant. The other

baseline systems do not share this property. For instance, to run Spark on GPU (e.g., using

RAPIDS [13], the same backend of BlazingSQL), we would have to add the lines of code for

the GPU implementation.

5.6 Limitations and Discussion

TQP is the first query processor on TCRs, and as such, it currently suffers many limitations.

For example, support for nulls is limited, and data types such as decimals or non-UTF-8

strings are not available. We plan to add better support for nulls by attaching a validity

bitmap to each tensor, as in Apache Arrow [46]. The choice of supporting strings through

padding is mostly driven by the lack of support for sparse and jagged tensors in TCRs. There

7Note that PyTorch/XLA does not support all the necessary tensor operations and the execution fallback
to regular CPU for part of the query is not available.



146

Table 5.5: Lines of source code for implementing relational operators, excluding blank lines
and comments.

System
Relational Operator

Hash Join Sort-Based Join Aggregation

TQP (Various HW) 148 182 104 (sort-based)
Spark(CPU) 706 1439 637 (sort-based)

DuckDB (CPU) 1415 877 1466 (hash-based)
BlazingSQL (GPU) 1628 N/A 1389 (hash-based)
OmnisciDB (GPU) 10141 N/A 2416 (hash-based)

is research in this space [94], and we plan to support non-dense tensors. We also plan to add

the possibility to encode strings.

As we see in Section 5.5, TQP’s scalability is currently limited by PyTorch’s implementa-

tion. Along the same line, PyTorch does not natively support out-of-core computation, and

hence TQP is limited to datasets fitting in (device) memory. We are actively working on

enabling TQP over batched tensors, which will allow us to scale beyond memory, and enable

better parallelization opportunities. Furthermore, from Section 5.5.6, we realize that there is

a large gap between the tensor programs currently generated by TQP and the optimal ones.

We are extending TQP’s optimizer to fill this gap.

Finally, adding support for recursive queries [168, 244, 283] is interesting future work,

since iterative programs can be efficiently executed on GPUs [157] as long as they fit in the

device memory.

5.7 Summary

In this chapter, we presented TQP, the first system able to run relational queries on TCRs.

TQP is able to take advantage of all the innovation poured into TCRs, as well as to run

efficiently on any hardware devices supported by TCRs. Our experiments showed not only

that TQP is capable of running the full TPC-H benchmark on TCRs, but also that TQP’s
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performance is comparable and often superior to that of specialized CPU and GPU query

processing systems.
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Chapter 6

CONCLUSION

The emerging era of AI is bringing significant challenges and opportunities to data

management systems. This dissertation considered two core challenges.

First, modern data management systems must efficiently support emerging AI workloads

that not only consume vast amounts of data but also generate substantial data artifacts.

Traditional data management systems, however, struggle to meet the demands of these new

workloads, which include storing, indexing, and querying large-scale input datasets and model

artifacts.

Second, due to the tremendous computational and memory demands of AI workloads, the

advent of specialized AI infrastructure presents new opportunities to improve the performance

of query processing in data management systems at a time when improvements on CPUs have

slowed down. Such infrastructure, which runs in data centers, is being increasingly deployed

in the cloud and on-premise and is thus readily available for data management systems

to use. However, the diversity in hardware characteristics and programming abstractions

of AI infrastructure make it difficult for system builders to fully leverage this powerful

infrastructure.

This dissertation presented two lines of work intended to bridge the gap between data

management systems and AI. First, we introduced two data systems, DeepEverest and

MaskSearch, designed to efficiently support AI model explanation and dataset exploration

workloads. In Chapter 3, we introduced DeepEverest, a system designed to accelerate

neural network explanation queries that return input examples in the dataset with certain

neuron activation patterns, i.e., interpretation by example queries. These queries facilitate

understanding of the functionality of groups of neurons in the neural network by tying
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that functionality to input examples in the dataset. DeepEverest consists of an efficient

indexing technique and a query execution algorithm with various optimizations to accelerate

interpretation by example queries. Our evaluation shows that DeepEverest, using less than

20% of the storage of full materialization, significantly accelerates individual queries by up to

63× and consistently outperforms existing systems and approaches on multi-query workloads

that simulate neural network interpretation processes. DeepEverest appeared in VLDB

2022 [115] and is available at https://github.com/uwdb/DeepEverest.

In Chapter 4, we introduced MaskSearch, a system designed to enable efficient querying

over databases of image masks generated by AI tasks; it supports the retrieval of masks

with properties that are important for applications, such as identifying spurious correlations,

detecting adversarial examples, and monitoring model errors in AI applications. MaskSearch

applies a novel indexing technique and an efficient filter-verification query execution framework

to accelerate mask search queries. Our experiments show that MaskSearch, using indexes

approximately 5% of the compressed data size, accelerates individual queries by up to

two orders of magnitude and consistently outperforms existing methods on various multi-

query workloads that simulate mask search processes in AI applications. MaskSearch

is under submission [117] and is available at https://github.com/uwdb/MaskSearch. A

demonstration of the system is accepted at VLDB 2024 [272].

We then presented the second line of work in this dissertation, i.e., incorporating AI in-

frastructure to accelerate relational query processing in data management systems. Chapter 5

introduced the Tensor Query Processor (TQP), the industry’s first query processor that

compiles SQL queries into tensor programs and executes them on any hardware backend

supported by the tensor computation runtime, including CPUs, GPUs, and TPUs. TQP

comprises a collection of tensor algorithms that implement relational operators and a compiler

stack for transforming SQL queries into tensor programs. We demonstrated TQP’s poten-

tial to use AI infrastructure to accelerate relational query processing in data management

systems, showing its support for the full TPC-H benchmark and its ability to outperform

state-of-the-art systems. TQP appeared in VLDB 2022 [116] and its demonstration [47] won

https://github.com/uwdb/DeepEverest
https://github.com/uwdb/MaskSearch
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the Best Demo Award at VLDB 2022.

6.1 Future Work Related to DeepEverest and MaskSearch

One important direction for future work is to extend DeepEverest and MaskSearch

to support more complex and diverse AI model explanation and dataset exploration work-

loads. For example, MaskSearch now supports mask search queries based only on the

count of pixels in specified regions and pixel value distributions. Future work could extend

MaskSearch to support more complex queries, such as queries that involve the connectivity

of pixels in certain value ranges in the masks (e.g., find saliency maps that have the largest

number of clusters of connected pixels with values in a certain range, which could be useful for

identifying diffused attention by the model). Future work could also extend DeepEverest

to support more complex queries, such as queries involving groups of neurons that span

multiple layers of the neural network. It would be interesting to explore how to adapt or

extend the indexing and query processing techniques in DeepEverest and MaskSearch

to support these more complex queries.

Another potentially valuable direction for future work would be extending DeepEverest

and MaskSearch to support explanation workloads for foundation models [68, 37, 257],

which have become increasingly prevalent in recent years. It remains to be examined how

foundation models could become more transparent and explainable and how database indexing

and query processing techniques could be leveraged to support the interpretation of these

models, which are orders of magnitude larger than traditional neural networks.

6.2 Future Work Related to TQP

Although TQP has shown promising results in accelerating relational query processing using

AI infrastructure, it has limitations that we plan to address in future work, as detailed

in Section 5.6. One limitation is its lack of support for certain SQL features, such as nulls,

encoded strings, and recursive queries. Future work could better support these features.

We could further enable TQP to work over batched tensors, which would let it process
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larger-than-memory-sized datasets and provide more parallelization opportunities. In addition,

we described in Section 5.5.6 the large gap between the tensor programs currently generated

by TQP and the optimal tensor programs that could be generated by a human expert. Future

work could explore how to bridge this gap, potentially by designing a query optimizer that

is aware of the tensor algorithms and hardware backends and thus able to generate more

efficient tensor programs.

Another interesting direction for future work is exploring how to efficiently support the

full loop of AI model training and inference within a data management system. With TQP,

relational operators and AI operators (e.g., ML model prediction operators) could be compiled

into a unified abstraction, tensor programs, and executed on the same hardware backend.

This opens the possibility of training modern AI models within a data management system

that directly ingests data from the database and stores the trained models and artifacts

back into the database, with no need to move data between systems. It remains to be

investigated how “user-friendly” AI model training could become after being integrated into

a data management system and how efficiently data management systems could support

multi-modal data processing (e.g., relational data, image/video data, text data, graph data)

and multi-stage model training and inference pipelines. Despite some attempts in this

direction [100], there remains large potential for future work in this area.

6.3 Final Remarks

This dissertation makes an important contribution towards improving modern data manage-

ment systems to better support AI workloads and towards leveraging modern AI infrastructure

to accelerate relational query processing. The emerging era of AI will bring further chal-

lenges and opportunities to data management systems, and there is fertile ground for future

exploration and innovation in this changing landscape.
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