# **Dong He** donghe@cs.washington.edu | dongheuw.github.io | linkedin.com/in/dongheuw | +1 (206) 295-6340 ### Education ### **University of Washington** Sep 2019 – Jun 2024 (expected) PhD in Computer Science, advised by Prof. Magdalena Balazinska Seattle, WA • Dissertation Topic: Improving Data Management Systems: For and Through Machine Learning **Fudan University** Sep 2015 – Jul 2019 BSc in Computer Science (Honors), advised by Prof. Yang Chen • Graduated with Highest Distinction (6 out of 118) Shanghai ### **Publications** MaskSearch: Querying Image Masks at Scale. [Preprint] [Website] [Code] D. He, J. Zhang, M. Daum, A. Ratner, M. Balazinska. **VOCALExplore: Pay-as-You-Go Video Data Exploration and Model Building**. [Preprint] [Code] M. Daum, E. Zhang, **D.** He, S. Mussmann, B. Haynes, R. Krishna, M. Balazinska. VLDB 2024 (to appear). EQUI-VOCAL: Synthesizing Queries for Compositional Video Events from Limited User Interactions. [Paper] [Tech Report] [Code] E. Zhang, M. Daum, D. He, B. Haynes, R. Krishna, M. Balazinska. VLDB 2023. EQUI-VOCAL Demonstration: Synthesizing Video Queries from User Interactions. [Paper] E. Zhang, M. Daum, D. He, M. Ganti, B. Haynes, R. Krishna, M. Balazinska. VLDB 2023, Demo Track. Query Processing on Tensor Computation Runtimes. [Paper] [Talk] [Keynote by Microsoft Azure CTO] [MarkTechPost] [SyncedReview] D. He, S. Nakandala, D. Banda, R. Sen, K. Saur, K. Park, C. Curino, J. Camacho-Rodríguez, K. Karanasos, M. Interlandi. VLDB 2022. Share the Tensor Tea: How Databases can Leverage the Machine Learning Ecosystem. [Paper] Y. Asada\*, V. Fu\*, A. Gandhi\*, A. Gemawat\*, L. Zhang\*, D. He, V. Gupta, E. Nosakhare, D. Banda, R. Sen, M. Interlandi. VLDB 2022. Best Demo Award (Demonstration of Query Processing on Tensor Computation Runtimes). DeepEverest: Accelerating Declarative Top-K Queries for Deep Neural Network Interpretation. [Paper] [Extended Tech Report] [Website] [Code] [Talk] D. He, M. Daum, W. Cai, M. Balazinska. VLDB 2022. **VOCAL:** Video Organization and Interactive Compositional AnaLytics. [Paper] [Website] [Talk] M. Daum\*, E. Zhang\*, D. He, M. Balazinska, B. Haynes, R. Krishna, A. Craig, A. Wirsing. CIDR 2022. VSS: A Storage System for Video Analytics. [Paper] [Tech Report] [Code] [Talk] B. Haynes, M. Daum, D. He, A. Mazumdar, M. Balazinska, A. Cheung, L. Ceze. SIGMOD 2021. TASM: A Tile-Based Storage Manager for Video Analytics. [Paper] [Code] [Talk] M. Daum, B. Haynes, D. He, A. Mazumdar, M. Balazinska. ICDE 2021. Accelerating Mobile Applications at the Network Edge with Software-Programmable FPGAs. [Paper] S. Jiang, D. He, C. Yang, C. Xu, G. Luo, Y. Chen, Y. Liu, J. Jiang. INFOCOM 2018. Incorporating Location-Based Social Networks in the Prediction of Real-Time Taxi Demand with Deep Learning. [Poster] D. He, Y. Chen. CoNEXT 2018 Poster Session. ## **Selected Awards** | • | Best Demo Award, 48th International Conference on Very Large Databases (VLDB) | 2022 | |---|-------------------------------------------------------------------------------------------------------------------------------------------|--------| | • | • <u>Madrona Prize</u> , for the most commercializable research project, Madrona Venture & UW [ <u>GeekWire</u> ] [ <u>BusinessWire</u> ] | 2022 | | • | Paul G. Allen Fellowship, University of Washington | - 2020 | | • | Wangdao Scholar, Undergraduate Research Opportunities Program, Fudan University | 2018 | | • | • Silver Medal, ACM International Collegiate Programming Contest (ACM-ICPC), Asia Regional 2015 | - 2016 | | • | · Silver Medal (Top 100 in China), National Olympiad in Informatics (NOI), China National Finals | 2014 | | • | • First Prizes, National Olympiad in Informatics in Provinces (NOIP) 2009 | - 2014 | | | | | ## **Selected Projects** **Tensor Query Processing** May 2021 – Jun 2022 Project owner & lead Microsoft, University of Washington - Created Tensor Query Processor (TQP): Led the design and implementation (in Python & C++) of the world's first query processor, TQP, that compiles SQL queries into tensor programs and executes them on various hardware (CPUs, GPUs, TPUs). - Full TPC-H Support & Hardware Adaptability: Enabled TQP to support the full TPC-H benchmark on various hardware with reduced development effort, demonstrating the tensor abstraction's capability to relational SQL queries. - **Significant Speedups**: Improved execution time for TPC-H queries by 10x over specialized CPU and GPU systems such as DuckDB and HeavyDB, and achieved a 9x speedup over CPU baselines when ML inference is used with SQL queries. - Recognized Impact: The demo of TQP won the <u>Best Demo Award</u> at VLDB 2022. TQP was also <u>featured by Azure CTO</u> at Microsoft Build 2023. ## Data Management Systems for Model Explanation and Exploration [Website] Oct 2019 – present Project owner & lead University of Washington - MaskSearch: Querying Image Masks at Scale - Created MaskSearch: Led the design and implementation (in Python) of a system, MaskSearch, that accelerates image retrieval queries based on properties of mask annotations of the images by designing a novel indexing technique and an efficient filter-verification query execution framework. These queries are essential for a variety of applications such as identifying spurious correlations learned by ML models and detecting maliciously manipulated images. - Achieved Excellent Empirical Performance: MaskSearch accelerates individual queries by up to 100x, using indexes only 5% the size of the original data, and consistently outperforms existing methods in various multi-query workloads. - DeepEverest: Accelerating Interpretation by Example Queries [Website] - **Created DeepEverest**: Designed and implemented a system (in C++ & Python), DeepEverest, for efficiently executing *inter- pretation by example* queries that identify examples based on activation patterns in neural networks, by designing an efficient indexing technique and a theoretically-proven instance-optimal query execution algorithm with empirical optimizations. - Optimized Storage and Query Performance: DeepEverest accelerates individual *interpretation by example* queries by up to 63x while reducing storage to less than 20% of full materialization and consistently outperforms baselines in various multiquery workloads that simulate model explanation processes. ## VisualWorld Video Data Management Systems [Website] Apr 2020 - Sep 2023 Project contributor University of Washington - VOCAL: a set of video data management systems that support efficient data cleaning, exploration, and organization for large-scale video data, as well as processing complex compositional queries, even when no pretrained model exists. - TASM: a video storage manager which enables spatial random access to encoded videos. TASM speeds up content retrieval queries by up to 94% and improves the throughput of the full scan phase of object detection queries by up to 2x. - VFS: a system that decouples application design from video data's physical layout and compression optimizations, allowing developers to focus on their relevant functionality, while VFS handles the low-level details associated with video data persistence. VFS also improves read performance by up to 54% and reduces storage costs by up to 45%. # FPGA-Based Edge Computing for Accelerating Mobile Applications Jul 2017 - Aug 2017 Project contributor Peking University - **Developed FPGA-Based Edge Computing Model**: Engineered a prototype (in C++ & Python) that minimizes response time and energy consumption for interactive mobile applications by offloading computation to an FPGA-based edge. - **Proven Performance Improvements**: Achieved up to 3x/15x faster response times over CPU-based edge/cloud offloading and enhanced energy efficiency by up to 29.5%. ## **Work Experience** #### Snowflake PhD Intern, SQL Team Oct 2023 – present, remote • Research collaboration between UW and Snowflake on workload analysis and optimization with LLMs. Software Engineer Intern, Machine Learning Platform Team Jun 2023 – Sep 2023, Bellevue, WA - Created Snowflake's Distributed Model Trainer (SLT): Led the design and implementation (in Python) of the first distributed PyTorch training solution within Snowflake. My work automates the model training process and creates a user-friendly interface that hides underlying complexities, enabling users to train deep models with their data inside Snowflake effortlessly. - Demonstrated Multi-Modal Support of SLT: - MLP Training with Tabular Data: Trained a multi-layer perceptron using tabular data stored in Snowflake. - ResNet Training with Images: Trained an image classification model with image data stored in Snowflake. - LLM Finetuning with Text: Finetuned a large language model (stablelm-base-alpha-3b) using text data stored in Snowflake. <u>Microsoft</u> Jun 2021 – Sep 2021 - Created Tensor Query Processor (TQP): Led the design and implementation (in Python & C++) of the industry's first query processor that compiles SQL queries into PyTorch programs and executes them on various hardware (CPUs, GPUs, TPUs, etc.). - Full TPC-H Support & Enhanced Performance: Enabled full TPC-H benchmark support with TQP (until 2021 no GPU database was able to support full TPC-H benchmark), improving query execution time by 10x over specialized CPU and GPU systems (DuckDB, HeavyDB, BlazingSQL) and providing acceleration for a 9x speedup for queries containing ML inference. - **Recognized Impact**: First-authored a VLDB paper on TQP and won the **Best Demo Award** at VLDB 2022 (top academic conference in databases). TQP was also **featured by Azure CTO** at Microsoft Build 2023. <u>Goldman Sachs</u> Jul 2018 – Sep 2018 Summer Analyst, Engineering Hong Kong - Global Engineering Challenge Champion: Clinched the Global Winner title in the Intern Engineering Challenge. - Revamped Critical Financial Process: Redesigned and re-implemented the logic (in Java) for the true-up job reconciling estimated vs. actual profit and loss (PnL). Deployed enhancements led to 50% reduction in memory usage, significantly minimizing the risk of job failure. <u>Tencent</u> Jan 2018 – Feb 2018 Research Intern, YouTu X-Lab led by Prof. Jiaya Jia and Prof. Yu-Wing Tai Shenzhen - Optimized Neural Network Inference Efficiency: Analyzed node liveness and dependencies (in C++) in production-level deep neural networks, achieving up to 30% reduction in memory consumption through memory sharing. - Enhanced Data Collection and Annotation Process: Created tools (in Python) for gathering and annotating large-scale image data, streamlining the training process for image classification models. ## **Invited Talks & Presentations** | Snowflake, Query Processing on PyTorch | Jul 2023 | |----------------------------------------------------------------------------------------------------------------------|----------| | UW Madison, Data Management for Model Explanation and Exploration | Apr 2023 | | Huawei Cloud, Query Processing on Tensor Computation Runtimes | Feb 2023 | | UW CSE Affiliates Day, Data Management for Model Exploration and Debugging | Nov 2022 | | <ul> <li>VLDB 2022, Accelerating Declarative Top-K Queries for Deep Neural Network Interpretation [Video]</li> </ul> | Sep 2022 | | • VLDB 2022, Query Processing on Tensor Computation Runtimes [Video] | Sep 2022 | | VLDB 2022, How Databases can Leverage the Machine Learning Ecosystem | Sep 2022 | | Relational AI, Query Processing on Tensor Computation Runtimes | Jun 2022 | | • Microsoft Jim Gray Systems Lab, Query Processing on Tensor Computation Runtimes | Sep 2021 | ### **Teaching & Service** | reaching & Service | | | |----------------------------------------------------------------------------|-------------|--| | Teaching Assistant, UW CSEP 590A: Machine Learning for Big Data | Spring 2022 | | | Head Teaching Assistant, UW CSED 516: Scalable Data Systems and Algorithms | Fall 2021 | | | • Student Volunteer, VLDB 2020 | Sep 2020 | | ## Mentoring Experience - Master / Undergraduate Students: Jason Li (2022-2023), Mona Gandhi (2022-2023), Tim Li (2022). - Highschool Students: Parie Kumar (2022). ## **Professional Skills** - Programming Languages: C/C++, Python, Java, Pascal, Javascript, Matlab, ... - Machine Learning: PyTorch, TensorFlow, PyTorch Lightning, PEFT, Keras, Scikit-Learn, ... - **Technical**: Database Systems (Query Optimization & Execution, Indexing Techniques), Algorithms & Data Structures, Machine Learning Systems (Software & Hardware), Video Analytics, Computer Vision, Natural Language Processing, ... - Other Tools: MySQL, PostgreSQL, DuckDB, Spark, Hadoop, Hive, Google Cloud, AWS, Snowflake, Databricks, Docker, Selenium, LaTex, Git, SVN, ...